zbMATH — the first resource for mathematics

Numerical homoclinic instabilities and the complex modified Korteweg-de Vries equation. (English) Zbl 0900.65350

65Z05 Applications to the sciences
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Curry, J.H.; Herring, J.R.; Loncaric, J.; Orszag, S.A., Order and disorder in two- and three-dimensional Bénard convention, J. fluid mech., 147, 1, (1984) · Zbl 0547.76093
[2] Herbst, B.M.; Ablowitz, M.J., Numerically induced chaos in the nonlinear Schrödinger equation, Phys. rev. lett., 62, 2065, (1989)
[3] Herbst, B.M.; Ablowitz, M.J., On numerical chaos in the nonlinear Schrödinger equation, (), 192-206
[4] Ablowitz, M.J.; Herbst, B.M.; Keiser, J.M., Nonlinear evolution equations, solitons, chaos and cellular automata, (), 166-189 · Zbl 0728.35102
[5] Ablowitz, M.J.; Herbst, B.M., On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation, SIAM J. appl. math., 50, 339, (1990) · Zbl 0707.35141
[6] Ablowitz, M.J.; Herbst, B.M., On homoclinic boundaries in the nonlinear Schrödinger equation, (), 121-131 · Zbl 0736.35105
[7] Stuart, J.T.; DiPrima, R.C., The eckhaus and Benjamin-feir resonance mechanisms, (), 27
[8] Ablowitz, M.J.; Segur, H., Solitons and the inverse scattering transform, (1981), SIAM Philadelphia · Zbl 0299.35076
[9] Hirota, R., Direct methods of finding exact solutions of nonlinear evolution equations, () · Zbl 0336.35024
[10] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, (1983), Springer New York · Zbl 0515.34001
[11] Wiggens, S., Global bifurcations and chaos, (1988), Springer New York
[12] Ablowitz, M.J.; Ladik, J.F., A nonlinear difference scheme and inverse scattering, Stud. appl. math., 55, 213, (1976) · Zbl 0338.35002
[13] Taha, T.R.; Ablowitz, M.J., Analytical and numerical aspects of certain nonlinear evolution equations, I. analytical, J. comput. phys., 55, 192, (1984) · Zbl 0541.65081
[14] Ercolani, N.; Forest, M.G.; McLaughlin, D.W., Geometry of the modulational instability. part I: local analysis, Part II: global analysis, Part III: homoclinic orbits for the periodic sine-Gordon equation, Physica D, 43, 349, (1990), University of Arizona, preprint (P2) · Zbl 0705.58026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.