×

On the recursive sequence \(x_{n+1}=\frac A{x_n}+\frac 1{x_{n-2}}\). (English) Zbl 0904.39012

The authors establish that every positive solution of the equation \[ x_{n+1}= \frac{A}{x_n}+ {1}{x_{n-2}},\quad n= 0,1,\ldots, \] where \(x_{-1}\),\(x_{-2}\), \(A\in(0,\infty)\), converges to a period two solution. This proves Conjecture 2.4.2 of G. Ladas [J. Differ. Equ. Appl. 2, 449–452 (1996; 10.1080/10236199608808079)].

MSC:

39A12 Discrete version of topics in analysis
39A10 Additive difference equations
39A30 Stability theory for difference equations
PDF BibTeX XML Cite
Full Text: DOI