A spectral solver for the Navier-Stokes equations in the velocity-vorticity formulation for flows with two nonperiodic directions. (English) Zbl 0904.76058

A novel pseudospectral scheme for the Navier-Stokes equations with two nonperiodic directions is proposed. An influence matrix technique is employed to elicit the a priori lacking boundary conditions for the vorticity. The spatial discretization is based on a two-dimensional Chebyshev expansion on a nonstaggered grid of collocation points. The time marching scheme is Adams-Bashforth for the advective term and Crank-Nicholson for the viscous term. Divergence-free flow fields are achieved within machine accuracy.


76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI


[1] Fasel, H., Investigation of the stability of boundary layers by a finite difference model of the Navier-Stokes equations, J. Fluid Mech., 78, 355 (1976) · Zbl 0404.76041
[2] Dennis, S. C.R.; Ingham, D. B.; Cook, R. N., Finite difference methods for calculating steady incompressible flows in three dimensions, J. Comput. Phys., 33, 325 (1979) · Zbl 0421.76019
[3] Gatski, T. B.; Grosch, C. E.; Rose, M. E., A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables, J. Comput. Phys., 48, 1 (1982) · Zbl 0502.76040
[4] Gatski, T. B.; Grosch, C. E.; Rose, M. E., The numerical solution of the Navier-Stokes equations for 3-dimensional unsteady incompressible flows by compact schemes, J. Comput. Phys., 82, 298 (1989) · Zbl 0667.76051
[5] Napolitano, M.; Catalano, L. A., A multigrid solver for the vorticity-velocity Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 13, 49 (1991) · Zbl 0724.76060
[6] Napolitano, M.; Pascazio, G., A numerical method for the vorticity-velocity Navier-Stokes equations in two and three dimensions, Comput. Fluids, 19, 489 (1991) · Zbl 0733.76046
[7] Orlandi, P., Vorticity-velocity formulation for high Re flows, Comput. Fluids, 15, 137 (1987) · Zbl 0616.76034
[8] Guj, G.; Stella, F., A vorticity-velocity method for the numerical solution of 3D incompressible flows, J. Comput. Phys., 106, 286 (1993) · Zbl 0770.76045
[9] Guevremont, G.; Habashi, W. G.; Kotiuga, P. L.; Hafez, M. M., Finite element solution of the 2D compressible Navier-Stokes equations by a velocity-vorticity method, J. Comput. Phys., 107, 176 (1993) · Zbl 0776.76051
[10] Daube, O., Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique, J. Comput. Phys., 103, 402 (1992) · Zbl 0763.76046
[11] Quartapelle, L., Numerical Solution of the Incompressible Navier-Stokes Equations (1993), Birkhauser: Birkhauser Basel · Zbl 0784.76020
[12] Madabhushi, R. K.; Balachandar, S.; Vanka, S. P., A divergence-free Chebyshev collocation procedure for incompressible flows with two non-periodic directions, J. Comput. Phys., 105, 199 (1993) · Zbl 0768.76054
[13] Speziale, C. G., On the advantages of the vorticity-velocity formulation of the equations of fluid dynamics, J. Comput. Phys., 73, 476 (1987) · Zbl 0632.76049
[14] Shen, W. Z.; Loc, T. P., Numerical method for unsteady 3D Navier-Stokes equations in velocity-vorticity form, Comput. Fluids, 26, 193 (1997) · Zbl 0895.76062
[15] Nguyen, H. D.; Paik, S.; Chung, J. N., Application of vorticity integral conditioning to Chebyshev pseudospectral formulation for the Navier-Stokes equations, J. Comput. Phys., 106, 115 (1993) · Zbl 0769.76049
[16] Canuto, C.; Hussaini, M. Y.; Quateroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0636.76009
[17] Orszag, S. A., Numerical methods for the simulation of turbulence, Phys. Fluids, Suppl. II, 12, 250 (1969) · Zbl 0217.25803
[18] Haidvogel, D. B.; Zang, T., The accurate soluton of Poisson’s equation by expansion in Chebyshev polynomials, J. Comput. Phys., 30, 167 (1979) · Zbl 0397.65077
[19] Tuckerman, L. S., Diergence-free velocity fields in nonperiodic geometries, J. Comput. Phys., 80, 403 (1989) · Zbl 0668.76027
[21] Marcus, P. S., Simulation of Taylor-Couette flow. Part 1. Numerical methods and comparison with experiment, J. Fluid Mech., 146, 45 (1984) · Zbl 0561.76037
[22] Le Quéré, P.; de Roquefort, T. Alziary, Computation of natural convection in two-dimensional cavities with Chebyshev polynomials, J. Comput. Phys., 57, 210 (1985) · Zbl 0585.76128
[23] Le Quéré, P.; Masson, R.; Perrot, P., A Chebyshev collocation algorithm for 2D non-Boussinesq convection, J. Comp. Phys., 103, 320 (1992) · Zbl 0763.76061
[24] Werne, J., Incompressibility and no-slip boundaries in the Chebyshev-tau approximation: Correction to Kleiser and Schumann’s influence-matrix solution, J. Comput. Phys., 120, 260 (1995) · Zbl 0836.76076
[25] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387 (1982) · Zbl 0511.76031
[26] Demaret, P.; Deville, M., Chebyshev collocation solutions of the Navier-Stokes equations using multi-domain decomposition and finite element preconditioning, J. Comput. Phys., 95, 359 (1991) · Zbl 0726.76066
[27] Shen, J., Hopf bifurcation of the unsteady regularized driven cavity flow, J. Comput. Phys., 95, 228 (1991) · Zbl 0725.76059
[28] Phillips, T. N.; Roberts, G. W., The treatment of spurious pressure modes in spectral incompressible flow calculations, J. Comput. Phys., 105, 150 (1993) · Zbl 0766.76059
[30] Davis, G.de Vahl, Natural convection of air in a square cavity: a benchmark numerical solution, Int. J. Numer. Meth. Fluids, 3, 249 (1983) · Zbl 0538.76075
[31] Le Quéré, P., Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comp. Fluids, 20, 29 (1991) · Zbl 0731.76054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.