Eremenko, A. An analogue of the defect relation for the uniform metric. (English) Zbl 0905.30025 Complex Variables, Theory Appl. 34, No. 1-2, 83-97 (1997). Let \(f\) be a meromorphic function. We use the following denotations: \[ \begin{aligned} M(r,\infty,f) & =\sup_\theta \bigl| f(re^{i\theta}) \bigr|,\;M(r,a,f)= M\left(r,\infty, {1\over f-a} \right),\\ A(r,f) & ={1\over\pi} \iint_{| z|\leq r} {\bigl| f'(z)\bigr |^2 \over \biggl(1+ \bigl| f(z)\bigr|^2 \biggr)^2} dxdy,\;z=x+iy,\\ b(a,f) & =\varliminf_{r\to\infty} {\ln^+ M(r,a,f) \over A(r,f)}. \end{aligned} \] The author obtains the inequality \(\sum_a b(a,f)\leq 2\pi\) if for every \(a\in \overline \mathbb{C}\), \(b(a,f)\leq 2\pi\). Thus, we have an analogue of the Nevanlinna defect relation for the values \(b(a,f)\). The necessity of introducing \(b(a,f)\) appears evident after the paper of W. Bergweiler and H. Bock (1994). Reviewer: A.F.Grishin (Khar’kov) Cited in 7 ReviewsCited in 1 Document MSC: 30D30 Meromorphic functions of one complex variable, general theory 30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory Keywords:meromorphic function; subharmonic function; Ahlfors theory PDF BibTeX XML Cite \textit{A. Eremenko}, Complex Variables, Theory Appl. 34, No. 1--2, 83--97 (1997; Zbl 0905.30025) Full Text: DOI