×

zbMATH — the first resource for mathematics

A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems. (English) Zbl 0906.34029
Die Bestimmung periodischer Lösungen einer allgemeinen Differentialgleichung ist ein mit den Namen Poincaré-Birkhoff verbundenes Problem. Der Autor diskutiert unterschiedliche Resultate für die Existenz derartiger Lösungen und modifiziert einige bekannte Existenzkriterien.

MSC:
34C25 Periodic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Poincaré, H., Sur un théorème de geométrie, Rend. circ. mat. Palermo, 33, 375-407, (1912) · JFM 43.0757.03
[2] Morse, M., George david Birkhoff and his mathematical work, Bull. am. math. soc., 52, 357-391, (1946) · Zbl 0060.01409
[3] Birkhoff, G.D.; Birkhoff, G.D., Proof of Poincaré’s geometric theorem, (), 14, 673-681, (1913) · JFM 44.0469.02
[4] Birkhoff, G.D.; Birkhoff, G.D., Dynamical systems with two degrees of freedom, (), 18, 1-102, (1917) · Zbl 0011.16701
[5] Birkhoff, G.D.; Birkhoff, G.D., An extension of Poincaré’s last geometric theorem, (), 47, 252-266, (1925)
[6] Carter, P., An improvement of the poincaré—birkhoff fixed point theorem, Trans. am. math. soc., 269, 285-299, (1982) · Zbl 0507.55002
[7] Guillou, L., Théoréme de translation plane de Brouwer et généralisations du théorème de poincaré—birkhoff, Topology, 33, 333-351, (1994) · Zbl 0924.55001
[8] Brown, M.; Neumann, W.D., Proof of the poincaré—birkhoff fixed point theorem, Michigan math. J., 24, 21-31, (1977) · Zbl 0402.55001
[9] Jacobowitz, H.; Jacobowitz, H., Corrigendum, the existence of the second fixed point: a correction to “periodic solutions of x″ + ƒ(t, x) = 0 via the poincaré—birkhoff theorem, J. diff. eqns, J. diff. eqns, 25, 148-149, (1977) · Zbl 0354.34043
[10] Birkhoff, G.D., Une généralisation à n dimensions du dernier théorème de géometrie de Poincaré, Comptes rendus des séances de l’académie des sciences, 192, 196-198, (1931) · Zbl 0001.17402
[11] Hartman, P., On boundary value problems for superlinear second order differential equations, J. diff. eqns, 26, 37-53, (1977) · Zbl 0365.34032
[12] Birkhoff, G.D., Dynamical systems, () · Zbl 0171.05402
[13] Butler, G.J., The poincaré—birkhoff “twist” theorem and periodic solutions of second-order nonlinear differential equations, (), 135-147 · Zbl 0588.34032
[14] Mawhin, J., Oscillatory properties of solutions and nonlinear differential equations with periodic boundary conditions, Rocky mountain J. math., 25, 7-37, (1995) · Zbl 0830.34034
[15] Ding, W.-Y., A generalization of the Poincaré Birkhoff theorem, (), 341-346 · Zbl 0522.55005
[16] Franks, J., Generalizations of the poincaré—birkhoff theorem, Ann. math., 128, 139-151, (1988) · Zbl 0676.58037
[17] Del Pino, M.; Manásevich, R.; Murua, A., On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the poincaré—birkhoff theorem, J. diff. eqns, 95, 240-258, (1992) · Zbl 0745.34035
[18] Ding, T., An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance, (), 47-54 · Zbl 0511.34031
[19] Ding, T.; Zanolin, F., Periodic solutions of Duffing’s equations with superquadratic potential, J. diff. eqns, 97, 328-378, (1992) · Zbl 0763.34030
[20] Ding, W.-Y., Fixed points of twist mappings and periodic solutions of ordinary differential equations, Acta math. sin., 25, 227-235, (1982), (Chinese) · Zbl 0501.34037
[21] MOSER, J., Ordinary differential equations, periodic orbits. Lectures given at the Courant Institute.
[22] Morris, G.R., An infinite class of periodic solutions of x″ + 2x3 = p(t), (), 157-164 · Zbl 0134.07203
[23] Massey, W., Algebraic topology: an introduction, (1984), Springer New York
[24] Moise, E., Geometric topology in dimensions 2 and 3, (1977), Springer Berlin · Zbl 0349.57001
[25] Oxtoby, J.; Ulam, S., Measure preserving homeomorphisms and metrical transitivity, Ann. math., 42, 874-920, (1941) · Zbl 0063.06074
[26] Neumann, W.D., Generalizations of the Poincaré Birkhoff fixed point theorem, Bull. austral. math. soc., 17, 375-389, (1977) · Zbl 0372.54041
[27] Zeidler, E., ()
[28] Ding, T.; Zanolin, F., Subharmonic solutions of second order nonlinear equations: a time-map approach, Nonlinear analysis, 20, 509-532, (1993) · Zbl 0778.34027
[29] Nussbaum, R.D., The fixed point index and some applications, (1985), Les Presses de l’Université de Montréal New York · Zbl 0174.45402
[30] Ding, T.; Zanolin, F., Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type, (), 395-406 · Zbl 0846.34032
[31] Rebelo, C.; Zanolin, F., Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities, Trans. am. math. soc., 348, 2349-2389, (1996) · Zbl 0856.34051
[32] Schwartz, I.B.; Erneux, T., Subharmonic hysteresis and periodic doubling bifurcations for a periodically driven laser, SIAM J. appl. math., 54, 1083-1100, (1994) · Zbl 0809.34054
[33] Fonda, A.; Ramos, M., Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities, J. diff. eqns, 109, 354-372, (1994) · Zbl 0798.34048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.