×

New advances on a posteriori error on constitutive relation in f. e. analysis. (English) Zbl 0906.73064

Summary: This paper deals with error estimators based on residuals on the constitutive relation which have been developed for the past 20 years at Cachan. Especially in the case of elasticity, these error estimators can become poor in situations where the material and the mesh are strongly anisotropic. The crucial point herein is the construction of equilibrated stress fields from the computed finite element solution. Therefore, in this paper, the approach and in particular this last point are re-examined. Several important modifications are introduced in the concepts and basic techniques. Hence, a new generation of error estimators which seem to be extremely robust upon initial applications has been generated.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74A20 Theory of constitutive functions in solid mechanics
65N15 Error bounds for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ladevèze, P., Nouvelles procédures d’estimations d’erreur relative à la méthode des éléments finis, ()
[2] Ladevèze, P.; Leguillon, D., Error estimate procedure in the finite element method and application, SIAM J. numer. anal., 20, 3, 485-509, (1983) · Zbl 0582.65078
[3] Ladevèze, P.; Coffignal, G.; Pelle, J.P., Accuracy of elastoplastic and dynamic analysis, (), 181-203
[4] Babuška, I.; Strouboulis, T.; Upadhyay, C.S., A model study of the quality of a posteriori estimators for linear elliptic problems. error estimation in the interior of patchwise uniform grids of triangles, Comput. methods appl. mech. engrg., 114, 307-378, (1994)
[5] Babuška, I.; Strouboulis, T.; Upadhyay, C.S.; Gangaraj, S.K.; Copps, K., Validation of a posteriori error estimators by numerical approach, Int. J. numer. methods engrg., 37, 1073-1123, (1994) · Zbl 0811.65088
[6] Beckers, P.; Zhong, H.G., Influence of element distortions on the reliability of some a-posteriori error estimators, (), 177-188
[7] Ladevèze, P., Sur une famille d’algorithmes en mécanique des structures, Computes rendus acad. sci. Paris, Série II, 300, 41-44, (1985) · Zbl 0597.73089
[8] Gallimard, L.; Ladevèze, P.; Pelle, J.P., Error estimation and adaptivity in elastoplasticity, Int. J. numer. methods engrg., 39, 189-217, (1996) · Zbl 0842.73065
[9] Ladevèze, P., Mécanique non linéaire des structures, (1996), Hermes
[10] Ladevèze, P.; Moës, N., Adaptive control for time-dependent nonlinear finite element analysis, (), 79-92
[11] Ainsworth, M.; Oden, J.T., A unified approach to a posteriori error estimation using element residual methods, Numer. math., 65, 23-50, (1993) · Zbl 0797.65080
[12] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, () · Zbl 0789.65083
[13] Bank, R.E.; Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Math. comput., 44, 283-301, (1985) · Zbl 0569.65079
[14] Kelly, D.W.; Isles, J.D., Procedures for residual equilibration and local error estimation in the finite element method, Commun. appl. numer. methods, 5, 495-505, (1989) · Zbl 0679.73027
[15] Ladevèze, P.; Pelle, J.P.; Rougeot, P., Error estimation and mesh optimization for classical finite elements, Engrg. comput., 8, 69-80, (1991)
[16] Ladevèze, P.; Maunder, E.A.W., A general method for recovering equilibrating element traction, Comput. methods appl. mech. engrg., 137, 111-151, (1996) · Zbl 0886.73065
[17] Ladevèze, P., La méthode d’évaluation d’erreur en relation de comportement appliquée à la M.E.F.: qualité et amélioration, ()
[18] Zienkiewicz, O.C.; Zhu, J.Z., The superconvergent patch recovery and a posteriori error estimates. part 1: the recovery technique, Int. J. numer. methods engrg., 33, 1331-1364, (1992) · Zbl 0769.73084
[19] Zienkiewicz, O.C.; Zhu, J.Z., The superconvergent patch recovery and a posteriori error estimates, part 2: error estimates and adaptivity, Int. J. numer. methods engrg., 33, 1365-1382, (1992) · Zbl 0769.73085
[20] Labbé, P.; Garon, A., A robust implementation of Zienkiewicz and Zhu’s local patch recovery method, Commun. numer. methods engrg., 11, 427-434, (1995) · Zbl 0823.65105
[21] Boisse, Ph.; Perrin, J., Calcul de l’erreur en relation de comportement pour LES modélisations par éléments finis de plaque C0, Comptes rendus acad. sci. Paris, Série II, 320, 289-294, (1995) · Zbl 0832.73066
[22] Coorevits, P.; Pelle, J.P.; Ramananjanahary, C., Error estimation and adaptation meshing for plates structures—application using the DKT element, () · Zbl 0986.74066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.