×

zbMATH — the first resource for mathematics

Planar competitive and cooperative difference equations. (English) Zbl 0907.39004
The author considers the two-dimensional dynamical system given by \[ u_{n +1} =f(u_n) -g(v_n),\;v_{n+1} =f(v_n) -g(u_n), \tag{*} \] generated by the map \(P(u,v)= (f(u)- g(v), \;f(v)-g(u))\). Assuming that \(f\) and \(g\) are nondecreasing, \(P\) is a competitive map which leaves invariant the diagonal \(\Delta= \{(u,v):v=u\}\). General definitions of order relations and competitive and cooperative maps are given and, by an example, it is shown that complicated dynamics can occur for such maps, but for exceptional initial data. This paper focusses on the special class of orientation reversing competitive and cooperative maps. Such maps have relatively simple dynamics. Finally, several applications to two models in population biology are discussed.

MSC:
39A10 Additive difference equations
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chow S.N., Methods of Bifurcation Theory (1982) · Zbl 0487.47039
[2] Collet P., Iterated Map of the Interval as Dynamical Systems (1980) · Zbl 0458.58002
[3] Dancer E., J. Reine Angew. Math. 419 pp 125– (1991)
[4] DOI: 10.1007/BF00276900 · Zbl 0474.92015
[5] Devaney R., An Introduction to Chaotic Dynamical Systems (1987)
[6] DOI: 10.1016/0362-546X(91)90163-U · Zbl 0724.92024
[7] DOI: 10.1137/0520062 · Zbl 0676.92011
[8] Goh B.-S., Management and Analysis of Biological Populations (1980)
[9] Guckenheimer J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983)
[10] Hess P., Pitman Res. Notes in Math 247 (1991)
[11] DOI: 10.1016/0040-5809(76)90045-9 · Zbl 0338.92020
[12] DOI: 10.1007/BF00276091 · Zbl 0525.92024
[13] Hale J.K., Amer. Math. Providence 18 (1988)
[14] DOI: 10.1016/0362-546X(91)90097-K · Zbl 0743.35033
[15] DOI: 10.1515/crll.1988.383.1 · Zbl 0624.58017
[16] DOI: 10.1007/BF00276199 · Zbl 0638.92019
[17] Hsu S.B., Trans. Amer. Math. Soc. 25 (1996)
[18] DOI: 10.1007/BF00275495 · Zbl 0668.92011
[19] DOI: 10.2307/2402596
[20] DOI: 10.1007/BF00178325 · Zbl 0729.92022
[21] LaSalle J.P., The Stability of Dynamical Systems (1976) · Zbl 0364.93002
[22] DOI: 10.1126/science.186.4164.645
[23] DOI: 10.1086/283092
[24] Pakes A.G., Mathematical Ecology of Plant Species Competition (1990) · Zbl 0726.92027
[25] DOI: 10.1007/BF00375672 · Zbl 0755.58039
[26] Poláčik P., J. Dyn. & Diff. Eqn. 116 pp 279– (1993) · Zbl 0786.58002
[27] Robinson C., Dynamical Systems, Stability, Symbolic Dynamics, and Chaos (1995) · Zbl 0853.58001
[28] DOI: 10.1007/BF00307854 · Zbl 0344.92009
[29] DOI: 10.1017/CBO9780511530043
[30] DOI: 10.1016/0022-0396(86)90086-0 · Zbl 0596.34013
[31] DOI: 10.1137/0517091 · Zbl 0609.34048
[32] Smith H.L., Proc. WCNA 17 (1996)
[33] Smith H.L., Competitive Difference Equations · Zbl 0907.39004
[34] Smith H.L., Amer. Math. Soc. Math. Surv. and Monogr. 41 (1995)
[35] Shub M., Global Stability of Dynamical Systems (1987) · Zbl 0606.58003
[36] DOI: 10.1515/crll.1992.423.101
[37] DOI: 10.2307/2159216 · Zbl 0755.34039
[38] Tereščák I., Dynamics of C 1 smooth strongly monotone discrete-time dynamical systems
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.