Phases of \(N=2\) theories in two dimensions. (English) Zbl 0910.14020

Summary: By looking at phase transitions which occur as parameters are varied in supersymmetric gauge theories, a natural relation is found between sigma models based on Calabi-Yau hypersurfaces in weighted projective spaces and Landau-Ginzburg models. The construction permits one to recover the known correspondence between these types of models and to greatly extend it to include new classes of manifolds and also to include models with \((0,2)\) world-sheet supersymmetry. The construction also predicts the possibility of certain physical processes involving a change in the topology of space-time.
Reprinted in Mirror Symmetry II, AMS/IP Stud. Adv. Math. 1, 143-211 (1997; see the following review).


14J32 Calabi-Yau manifolds (algebro-geometric aspects)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv


[1] Martinec, E., Criticality, catastrophes, and compactifications, (Brink, L.; Friedan, D.; Polyakov, A. M., Physics and mathematics of strings (1990), World Scientific: World Scientific Singapore) · Zbl 0737.58060
[2] Vafa, C.; Warner, N., Catastrophes and the classification of conformal field theories, Phys. Lett., B218, 51 (1989)
[3] Greene, B.; Vafa, C.; Warner, N., Calabi-Yau manifolds and renormalization group flows, Nucl. Phys., B324, 371 (1989) · Zbl 0744.53044
[4] Lerche, W.; Vafa, C.; Warner, N., Chiral rings in \(N = 2\) superconformal theory, Nucl. Phys., B324, 427 (1989)
[5] Cecotti, S.; Girardello, L.; Pasquinucci, A., Singularity theory and \(N = 2\) supersymmetry, Int. J. Mod. Phys., A6, 2427 (1991) · Zbl 0741.58052
[6] Cecotti, S., \(N = 2\) Landau-Ginzburg vs. Calabi-Yau σ-model: non-perturbative aspects, Int. J. Mod. Phys., A6, 1749 (1991) · Zbl 0743.57022
[7] Aspinwall, P.; Greene, B.; Morrison, D., Multiple mirror manifolds and topology change in string theory, Phys. Lett. B (1993), to be published
[8] Gates, J.; Hubsch, T., Calabi-Yau heterotic strings and supersymmetric sigma models, Nucl. Phys., B343, 741 (1990)
[9] Thaddeus, M., Stable pairs, linear systems, and the Verlinde formula (1992), MSRI preprint
[10] Wess, J.; Bagger, J., Supersymmetry and supergravity (1992), Princeton Univ. Press: Princeton Univ. Press Princeton
[11] Gates, S. J.; Grisaru, M. T.; Rocek, M.; Siegel, W., Superspace, or one thousand and one lessons in supersymmetry (1983), Benjamin-Cummings: Benjamin-Cummings Menlo Park, CA · Zbl 0986.58001
[12] Freund, P. G.O., Introduction to supersymmetry (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0601.53067
[13] West, P., Introduction to supersymmetry and supergravity (1986), World Scientific: World Scientific Singapore
[14] Misra, S. P., Introduction to supersymmetry and supergravity (1992), Wiley Eastern Limited: Wiley Eastern Limited New York · Zbl 0752.53045
[15] Gates, J., Superspace formulation of new non-linear sigma models, Nucl. Phys., B238, 349 (1984)
[16] Gates, S. J.; Hull, C. M.; Rocek, M., Twisted multiplets and new supersymmetric nonlinear σ-models, Nucl. Phys., B248, 157 (1984)
[17] Buscher, T.; Lindstrom, U.; Rocek, M., New supersymmetric σ-models with Wess-Zumino term, Phys. Lett., B202, 94 (1988)
[18] Hitchin, N. J.; Karlhede, A.; Lindstrom, U.; Rocek, M., Hyper-Kahler metrics and supersymmetry, Commun. Math. Phys., 108, 535 (1987) · Zbl 0612.53043
[19] Rocek, M., Modified Calabi-Yau manifolds with torsion, (Yau, S.-T., Essays on mirror manifolds (1992), International Press) · Zbl 0859.53050
[20] Rocek, M.; Verlinde, E., Duality, quotients, and currents, Nucl. Phys., B373, 630 (1992)
[21] D’Adda, A.; Davis, A. C.; DiVecchia, P.; Salomonson, P., An effective action for the
((C P^{n−1}\) model, Nucl. Phys., B222, 45 (1983)
[22] Hubsch, T., Of marginal kinetic terms and anomalies, Mod. Phys. Lett., A6, 1553 (1991) · Zbl 1020.81902
[23] Coleman, S., More on the massive Schwinger model, Ann. Phys. (NY), 101, 239 (1976)
[24] Witten, E., Mirror manifolds and topological field theory, (Yau, S.-T., Essays on mirror manifolds (1992), International Press) · Zbl 0834.58013
[25] Vafa, C.; Cecotti, S., Exact results for supersymmetric sigma models, Phys. Rev. Lett., 68, 903 (1992) · Zbl 0969.81634
[26] Pilch, K.; Schellekens, A.; Warner, N., Anomalies, characters, and strings, Nucl. Phys., B287, 317 (1987)
[27] Witten, E., The index of the Dirac operator in loop space, (Landwebber, P., Elliptic curves and modular forms in algebraic topology (1988), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0679.58045
[28] (Landwebber, P., Elliptic curves and modular forms in algebraic topology (1988), Springer-Verlag: Springer-Verlag Berlin)
[29] Witten, E., Topological sigma models, Commun. Math. Phys., 118, 411 (1988) · Zbl 0674.58047
[30] Eguchi, T.; Yang, S.-K., \(N = 2\) superconformal models as topological field theories, Mod. Phys. Lett., A4, 1653 (1990)
[31] Vafa, C., Topological Landau-Ginzburg models, Mod. Phys. Lett., A6, 337 (1991) · Zbl 1020.81886
[32] Bradlow, S.; Daskapoulos, G., Moduli of stable pairs for holomorphic bundles over Riemann surfaces, Int. J. Math., 2, 477 (1991) · Zbl 0759.32013
[34] Guillemin, V.; Sternberg, S., Geometric quantization and multiplicities of group representations, Invent. Math., 67, 515 (1982) · Zbl 0503.58018
[35] Mumford, D.; Fogarty, J., Geometric invariant theory (1982), Springer: Springer Berlin · Zbl 0504.14008
[36] Newstead, P., Introduction to moduli problems and orbit spaces (1978), Tata Institute · Zbl 0411.14003
[37] Duistermaat, J. J.; Heckman, G. J., On the variation in the cohomology in the symplectic form of the reduced phase space, Invent. Math., 69, 259 (1982) · Zbl 0503.58015
[38] Kreuzer, M.; Skarke, H., No mirror symmetry in Landau-Ginzburg Spectra (1992), preprints
[39] Aubin, M., The topology of torus action on symplectic manifolds (1991), Birkhauser: Birkhauser Basel
[40] Cox, D. A., The homogeneous coordinate ring of a toric variety (1992), preprint Amherst College Mathematics Department
[41] Batyrev, V., Variations of the mixed hodfe structure of affine hypersurfaces in algebraic tori (1992), preprint
[42] Hubsch, T., Calabi-Yau manifolds: A bestiary for physicists (1992), World Scientific: World Scientific Singapore · Zbl 0771.53002
[43] Schimmrigk, R., A new construction of a three generation Calabi-Yau manifold, Phys. Lett., B193, 175 (1987)
[44] Gepner, D., Exactly solvable string compactification on manifolds of \(SU (N)\) holonomy, Phys. Lett., B199, 380 (1987)
[45] Gepner, D., Space-time supersymmetry in compactified string theory and superconformal models, Nucl. Phys., B296, 757 (1988)
[46] Kollár, J., The structure of algebraic threefolds: An introduction to Mori’s program, Bull. Am. Meth. Soc., 17, 211 (1987) · Zbl 0649.14022
[47] Hartshorne, R., Algebraic geometry (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0367.14001
[48] Dine, M.; Seiberg, N.; Witten, E.; Wen, X.-G., Non-perturbative effects on the string world sheet I,II, Nucl. Phys., B289, 319 (1987)
[49] Candelas, P.; Green, P.; Parke, L.; de la Ossa, X., A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nucl. Phys., B359, 21 (1991) · Zbl 1098.32506
[51] Hull, C.; Witten, E., Supersymmetric sigma models and the heterotic string, Phys. Lett., B160, 398 (1985)
[52] Dine, M.; Seiberg, N., (2,0) Superspace, Phys. Lett., B180, 364 (1986)
[53] Brooks, R.; Gates, J.; Muhammed, F., Extended \(D = 2\) supergravity theories and their lower superspace realizations, Class. Quant. Grav., 5, 785 (1988)
[54] Green, M. B.; Schwarz, J. H.; Witten, E., (Superstring theory, vol. 2 (1987), Cambridge Univ. Press: Cambridge Univ. Press Cambridge)
[55] Distler, J.; Greene, B., Aspects of (2,0) string compactifications, Nucl. Phys., B304, 1 (1988)
[57] Guillemin, V.; Sternberg, S., Birational equivalence in the symplectic category, Inv. Math., 97, 485 (1989) · Zbl 0683.53033
[58] Klemm, A.; Schimmrigk, R., Landau-Ginzburg string vacua (1992), preprint · Zbl 0962.14029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.