# zbMATH — the first resource for mathematics

Weighted estimates for nonstationary Navier-Stokes equations. (English) Zbl 0910.35092
The Cauchy problem for the Navier-Stokes equations is considered in the whole 3-D space $\frac{\partial v}{\partial t}-\nu\Delta v+(u\cdot\nabla)v + \nabla p=0, \qquad\text{div }v =0,\quad x\in \mathbb{R}^3,\;t>0$ $v(x,0)=v_0(x)\quad x\in \mathbb{R}^3, \qquad v\to 0\;\text{as } | x| \to \infty$ Certain new results on the global solvability of the problem are obtained. Namely, if the given initial data $$v_0$$ is sufficiently small then a global strong solution exists. This solution satisfies $v,t^{\frac 12}v\in L^\infty((0,\infty);L^2(\mathbb{R}^3)),\quad \nabla v,\;t^{\frac 12}Av\in L^2((0,\infty);L^2(\mathbb{R}^3)),\quad (1+| x| ^2)v\in L^\infty(\mathbb{R}^3\times (0,\infty)).$ Here $$A$$ is the Stokes operator. Estimates of the solution are established in the corresponding functional spaces.

##### MSC:
 35Q30 Navier-Stokes equations 35A05 General existence and uniqueness theorems (PDE) (MSC2000)
##### Keywords:
Cauchy problem; global strong solution
Full Text:
##### References:
  Sh. Agmon, Lectures on elliptic boundary value problems, New York, 1965  Beirão da Veiga, H., On the suitable weak solutions to the navier – stokes equations in the whole space, J. math. pures appl., 64, 77-86, (1985) · Zbl 0615.35067  Beirão da Veiga, H., Existence and asymptotic behavior for strong solution of the navier – stokes equations on the whole space, Indiana univ. math. J., 36, 149-166, (1987) · Zbl 0601.35093  Fabes, B.E.; Jones, B.F.; Rivere, N.M., The initial value problem for the navier – stokes equations with data inL^p, Arch. rational mech. anal., 45, 222-240, (1972) · Zbl 0254.35097  Galdi, G.P.; Simader, C.G., New estimates for the steady-state Stokes problem in exterior domains with applications tot he navier – stokes problem, Differential integral equations, 7, 847-861, (1994) · Zbl 0823.35142  Giga, Y., Solutions for semilinear parabolic equations inL^pand regularity of weak solutions of the navier – stokes system, J. differential equations, 61, 186-212, (1986) · Zbl 0577.35058  He, Cheng, The Cauchy problem for the navier – stokes equations, J. math. anal. appl., 209, 228-242, (1997) · Zbl 0880.35091  He, Cheng, Existence and regularity of a class of weak solutions to the navier – stokes equations, J. math. anal. appl., 210, 512-530, (1997) · Zbl 0888.35079  Heywood, J.G., Open problems in the theory of the navier – stokes equations for viscous incompressible flow, Lecture notes in math., (1990), Springer-Verlag New York/Berlin, p. 1-22  Kato, T., Nonstantionary flows of viscous and ideal fluids inR3, J. funct. anal., 9, 296-305, (1972)  Kato, T., StrongL^p-solutions of the navier – stokes equations inrn, with application to weak solutions, Math. Z., 187, 471-480, (1984) · Zbl 0545.35073  Kato, T., Liapunov functions and monotonolity in the navier – stokes equation, Lecture notes in math., (1989), Springer-Verlag New York/Berlin, p. 53-64  Kato, T.; Ponce, G., Commutator estimates and the Euler and navier – stokes equations, Comm. pure. appl. math., 41, 891-907, (1988) · Zbl 0671.35066  Kajikiya, R.; Miyakaya, T., OnL2rn, Math. Z., 192, 135-148, (1986)  Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow, (1969), Gordon & Breach New York · Zbl 0184.52603  Ladyzhenskaya, O.A.; Solonnikov, V.A.; Uralceva, N.N., Linear and quasilinear equations of parabolic type, Transl. math. monographs, 23, (1968) · Zbl 0174.15403  Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta math., 63, 193-248, (1934) · JFM 60.0726.05  Lions, J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod Paris · Zbl 0189.40603  Schonbek, M.E., L2, Arch. rational mech. anal., 88, 209-222, (1985)  Stein, E.M., Singular integrals and differentiability properties of functions, (1970), Princeton Univ. Press Princeton · Zbl 0207.13501  Stein, E.M., Note on singular integrals, Proc. amer. math. soc., 8, 250-254, (1957) · Zbl 0077.27301  Temam, R., Navier – stokes equations, (1977), North-Holland Amsterdam · Zbl 0335.35077  Wiegner, M., Decay results for weak solutions of the navier – stokes equations onR^n, J. London math. soc. (2), 35, 303-313, (1987) · Zbl 0652.35095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.