×

Activity nets: A guided tour through some recent developments. (English) Zbl 0910.90175

Summary: This guided tour is ‘problem oriented’ – in in the sense of addressing the issues that are of concern to managers of large scale projects, and hence are, or should be, also of concern to scholars and researchers in the field. Consequently, this tour is ‘applied’ in perspective because of that orientation, though we hasten to emphasize that we discuss contributions to theory and methodology everywhere. Still, our classification stems from the point of view of issues and concerns rather than theoretical results or methodology. We shall confine ourselves, on the whole, to developments that occurred in the years 1987-94 with some forays into earlier contributions to maintain continuity of presentation.

MSC:

90B35 Deterministic scheduling theory in operations research

Software:

DAGEN
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adlakha, V. G.; Kulkarni, V. G., A classified bibliography of research on stochastic PERT networks: 1966-1987, INFOR, 27, 272-296 (1989) · Zbl 0678.90033
[2] Agrawal, M.; Elmaghraby, S. E.; Herroelen, W., DAGEN1: A generator of test sets for project activity nets, (OR Report No. 281 (1994), North Carolina State University: North Carolina State University Raleigh, NC 27695-7913) · Zbl 0916.90142
[3] Aho, A. V.; Hopcroft, J. E.; Ullman, J. D., The Design and Analysis of Computer Algorithms (1975), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0307.68053
[4] Archibald, R. D., The history of modern project management, Project Management Journal, 17.4, 29-31 (1987)
[5] Assad, A. A.; Wasil, E. A., Project management using a micro-computer, Computers & Operations Research, 13, 231-260 (1986)
[6] Badger, A. A., Interrelating project estimates to CPM schedules, AACE Transactions, 18, 38-42 (1974)
[7] Battersby, A., Network Analysis for Planning and Scheduling (1970), J. Wiley: J. Wiley New York
[8] Bein, W. W.; Kamburowski, J.; Stallman, M. F.M., Optimal reduction of two-terminal directed acyclic graphs, SIAM Journal on Computing, 21, 1112-1129 (1992) · Zbl 0768.68119
[9] Bellman, R. E., On a routing problem, Quarterly of Applied Mathematics, 16, 87-90 (1958) · Zbl 0081.14403
[10] Bigelow, C. G., Bibliography on project planning and control by network analysis: 1959-1961, Operations Research, 10, 728-731 (1962) · Zbl 0106.14106
[11] Blazewicz, J.; Lenstra, J. K.; Rinnoy Kan, A. H.G., Scheduling projects to resource constraints: Classification and complexity, Discrete Applied Mathematics, 5, 11-24 (1983) · Zbl 0516.68037
[12] Cantor, D. G.; Dimsdale, B., On direction-preserving maps of graphs, Journal of Combinatorial Theory, 6, 165-176 (1969) · Zbl 0181.51902
[13] Christofides, N. R.; Alvarez-Valdes, R.; Tamarit, J. M., Project scheduling with resource constraints: A branchand-bound approach, European Journal of Operational Research, 29, 262-273 (1987) · Zbl 0614.90056
[14] Dayanand, N.; Padman, R., Payments in projects: A contractor’s model, (Research Report (1993), The H. John Heinz III School of Public Policy and Management, Carnegie Mellon University: The H. John Heinz III School of Public Policy and Management, Carnegie Mellon University Pittsburgh, PA 15213) · Zbl 0892.90099
[15] De Reyck, B.; Herroelen, W. S., On the use of the complexity index as a measure of complexity in activity networks, (Research Report No. 9332 (1993), Department of Applied Economics, Katholieke Universiteit Leuven, Huis Renaer, Debériotstraat 36, B-3000 Leuven: Department of Applied Economics, Katholieke Universiteit Leuven, Huis Renaer, Debériotstraat 36, B-3000 Leuven Belgium) · Zbl 0924.90092
[16] De Wit, J.; Herroelen, W. S., An evaluation of microcomputer-based software packages for project management, European Journal of Operational Research, 49, 102-139 (1990) · Zbl 06908678
[17] Deckro, R. F.; Winkofsky, E. P.; Hebert, J. E.; Gagnon, R., A decomposition approach to multi-project scheduling, European Journal of Operational Research, 51, 110-118 (1991) · Zbl 0732.90039
[18] Deckro, R. F.; Hebert, J. E., Resource constrained project crashing, Omega, 17, 106-111 (1992)
[19] Demeulemeester, E.; Herroelen, W. S., A branchand-bound procedure for the multiple resource-constrained project scheduling problem, Management Science, 38, 1803-1818 (1992) · Zbl 0761.90059
[20] Demeulemeester, E.; Herroelen, W. S., A branchand-bound procedure for the generalized resource-constrained project scheduling problem, (Research Report 9206 (1992), Department of Applied Economic Sciences, Katholieke Universiteit Leuven: Department of Applied Economic Sciences, Katholieke Universiteit Leuven Leuven, Belgium) · Zbl 0890.90098
[21] Edwards, K., Project management with the PC: Part I and Part II, PC Magazine, 3, 24, 193-277 (1984)
[22] Elmaghraby, S. E., Activity Networks: Project Planning and Control by Network Models (1977), Wiley: Wiley New York · Zbl 0385.90076
[23] Elmaghraby, S. E., Project bidding under deterministic and probabilistic activity durations, European Journal of Operational Research, 9, 14-34 (1990) · Zbl 1403.90318
[24] Elmaghraby, S. E.; Pulat, P. S., Optimal project compression with due-dated events, Naval Research Logistics Quarterly, 26, 331-348 (1979) · Zbl 0401.90058
[25] Elmaghraby, S. E.; Herroelen, W. S., On the measurement of complexity in activity networks, European Journal of Operational Research, 5, 223-234 (1980) · Zbl 0444.90049
[26] Elmaghraby, S. E.; Herroelen, W. S., The scheduling of activities to maximize the net present value of projects, European Journal of Operational Research, 49, 35-49 (1990) · Zbl 1403.90670
[27] Elmaghraby, S. E.; Kamburowski, J., On project representation and activity floats, Arabian Journal of Science and Engineering, 15, 627-637 (1990) · Zbl 0712.90033
[28] Elmaghraby, S. E.; Kamburowski, J., The analysis of activity networks under generalized precedence relations (GPR), Parts I and II, (OR Reports No. 231 and 232 (1989), NC State University: NC State University Raleigh NC, 27695-7913)
[29] Elmaghraby, S. E.; Kamburowski, J., The analysis of activity networks under generalized precedence relations (GPRs), Management Science, 38, 1245-1263 (1992) · Zbl 0758.90044
[30] Elmaghraby, S. E.; Kamburowski, J., On project representation and activity floats, Arabian Journal of Science and Engineering, 15, 627-637 (1990) · Zbl 0712.90033
[31] Elmaghraby, S. E.; Kamburowski, J.; Michael, D. J.; Stallmann, M. F.M., Minimizing the complexity of a stochastic PERT network, (OR Report (1993), North Carolina State University: North Carolina State University Raleigh NC 27695-7913)
[32] Farid, F.; Boyer, L. T., Fair and reasonable markup (FaRM) pricing model, J. Construction Engineering and Management, 111, 4, 374-390 (1985)
[33] Ford, L.; Fulkerson, D., Flows in Networks (1962), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0106.34802
[34] Fresko-Weiss, H., High-End project managers make the plans, PC Magazine, 8, 9, 155-195 (1989)
[35] Fulkerson, D. R., A network flow computation for project cost curve, Management Science, 7, 167-178 (1961) · Zbl 0995.90519
[36] Gorenstein, S., An algorithm for project sequencing with resource constraints, Operational Research Quarterly, 23, 261-275 (1972)
[37] Herroelen, W. S.; Gallens, E., Computational experience with an optimal procedure for the scheduling of activities to maximize the net present value of projects, European Journal of Operational Research, 65, 274-277 (1993) · Zbl 0775.90232
[38] Hogan, T., Project planning programs put to the test, Business Software, 3, 3, 21-56 (1985)
[39] Hopcroft, J.; Karp, R., An \(n^{52}\) algorithm for maximum matchings in bipartite graphs, SIAM Journal on Computing, 225-231 (1973) · Zbl 0266.05114
[40] Jensen, P. A.; Barnes, J. W., Network Flow Programming (1980), Wiley: Wiley New York · Zbl 0598.90035
[41] Johnson, T. J.R., An algorithm for the resource-constrained project scheduling problem (1967), MIT, Unpublished Ph.D. Dissertation
[42] Kelley, J. E., Critical path planning and scheduling — Mathematical basis, Operations Research, 9, 296-320 (1961) · Zbl 0098.12103
[43] Kerbosh, J. A.G. M.; Schell, H. J., Network planning by the extended METRA Potential Method, (Report KS-1.1 (1975), Department of Industrial Engineering, University of Technology Eindhoven: Department of Industrial Engineering, University of Technology Eindhoven Netherlands)
[44] Kerzner, H., Project Management: A Systems Approach to Planning, Scheduling and Control (1979), Van Nostrand Reinhold: Van Nostrand Reinhold New York
[45] Kolisch, R.; Sprecher, A.; Drexl, A., Characterization and generation of a general class of resource-constrained project scheduling problems: Easy and hard instances, (Research Report N0301 (1992), Institut für Betriebswirtschaftslehere, Christian-Albrechts Universität zu Kiel) · Zbl 0870.90070
[46] Krishnamoorthy, M. S.; Deo, N., Complexity of the minimum-dummy-activities problem in a PERT network, Networks, 9, 189-194 (1979) · Zbl 0414.68018
[47] Lawler, E. L., Combinatorial Optimization: Networks and Matroids (1976), Holt, Rinehard & Winston: Holt, Rinehard & Winston New York · Zbl 0358.68059
[48] Lerda-Olberg, S., Bibliography on network-based project planning and control techniques: 1962-1965, Operations Research, 14, 925-931 (1966)
[49] Michael, D. J., Optimal representation of activity networks as directed acyclic graphs, (Ph.D. Thesis (1991), Program in Operations Research, North Carolina State University: Program in Operations Research, North Carolina State University Raleigh, NC 27695-7913)
[50] Michael, D. J.; Kamburowski, J.; Stallmann, M., On the minimum dummy-arc problem, RAIRO Recherche Opérationnelle, 27, 153-168 (1993) · Zbl 0774.90047
[51] Moder, J. J.; Phillips, C. R.; Davis, E. L., Project Management with CPM and PERT (1983), Van Nostrand Reinhold: Van Nostrand Reinhold New York
[52] Nemhauser, G. L.; Wolsey, L. A., Integer and Combinatorial Optimization (1988), Wiley Interscience: Wiley Interscience New York · Zbl 0469.90052
[53] Orlin, J. B., A faster strongly polynomial minimum cost flow algorithm, (Proc. 20th ACM Symp. on the Theory of Comp. (1988)), 377-387
[54] Patterson, J. H., Exact and heuristic solution procedures for the constrained-resource, project scheduling problem: Volumes I, II, and III, Research Monograph (1983), privately circulated
[55] Patterson, J. H.; Roth, G., Scheduling a project under multiple resource constraints: A zero-one programming approach, IIE Transactions, 8, 449-455 (1976)
[56] Patterson, J. H.; Slowsinki, P.; Talbot, F. B.; Weglarz, J., An algorithm for a general class of precedence and resource constrained scheduling problems, (Slowinski, R.; Weglarz, J., Advances in Project Scheduling (1989), Elsevier: Elsevier Amsterdam)
[57] Roy, B., Graphes et ordonnancements, Revue Française de Recherche Opérationelle, 25, 323-326 (1962)
[58] (SAS/OR User’s Guide, Version 6 (1989), SAS Institute Inc., SAS Circle, Box 8000: SAS Institute Inc., SAS Circle, Box 8000 Cary, NC 27512-8000)
[59] Schrage, L., Solving resource-constrained network problems by implicit enumeration — nonpremptive case, Operations Research, 18, 225-235 (1970) · Zbl 0197.46005
[60] Sepil, C.; Kazaz, B., Project scheduling with discounted cash flows and progress payments, (Technical Report (1994)), privately circulated · Zbl 0863.90088
[61] (Słowinski, R.; Weglarz, J., Advances in Project Scheduling (1989), Elsevier Science Publishers: Elsevier Science Publishers Amsterdam) · Zbl 0372.90062
[62] Stark, R. M., Unbalanced highway contract tendering, Operational Research Quarterly, 25, 373-388 (1974) · Zbl 0285.90032
[63] Sterboul, F.; Wertheimer, D., Comment construire un graphe PERT minimal, RAIRO Recherche Opérationnelle, 14, 85-98 (1980) · Zbl 0477.90028
[64] Stinson, J. P.; Davis, E. W.; Khumawala, B. M., Multiple resource-constrained scheduling using branch and bound, AIIE Transactions, 10, 252-259 (1978)
[65] Syslo, M. M., On the computational complexity of the minimum dummy activity problem in a PERT network, Networks, 14, 37-45 (1984) · Zbl 0543.90057
[66] Talbot, B. F.; Patterson, J. H., An efficient integer programming algorithm with network cuts for solving resource-constrained scheduling problems, Management Science, 24, 1163-1174 (1978) · Zbl 0395.90036
[67] Talbot, B. F., Optimal constructions of reversible digraphs, Discrete Applied Mathematics, 7, 209-220 (1984) · Zbl 0552.90047
[68] Valdes, J.; Tarjan, R.; Lawler, E., The recognition of series-parallel digraphs, SIAM Journal on Computing, 11, 298-313 (1982) · Zbl 0478.68065
[69] Warren, T., Four float measures for critical path scheduling, Journal of Industrial Engineering, 10, 19-23 (1969)
[70] Whitehouse, G. E., Systems Analysis and Design Using Network Techniques (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0342.90020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.