×

zbMATH — the first resource for mathematics

Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays. (English) Zbl 0912.93031
The authors propose and analyse a new high-order learning control algorithm for a class of nonlinear systems characterized by uncertainty and state delays. The method is enriched by interesting simulation results.

MSC:
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahn, H.; Choi, C.; Kim, K., Iterative learning control for a class of nonlinear systems, Automatica, 29, 1575-1578, (1993) · Zbl 0790.93063
[2] Arimoto, S.; Kawamura, S.; Miyazaki, F., Bettering operation of robots by learning, J. robotic systems, 1, 2, 123-140, (1984)
[3] Bien, Z.; Huh, K.M., Highorder iterative learning control algorithm, IEE proc. pt.-D, 136, 3, 105-112, (1989) · Zbl 0731.93047
[4] Bondi, P.; Casalino, G.; Gambardella, L., On the iterative learning control theory for robotic manipulators, IEEE J. robotics automation, 4, 14-22, (1988)
[5] Chen, Y.; Wen, C.; Sun, M., A robust high-order P-type iterative learning controller using current iteration tracking error, Int. J. of control, 68, 331-342, (1997) · Zbl 0886.93036
[6] Corke, P.I.; Armstrong-Hélouvry, B., A meta-study of PUMA 560 dynamicsa critical appraisal of literature data, Robotica, 13, 253-258, (1995)
[7] Craig, J. (1984). Adaptive control of manipulators through repeated trials. In Proc. Amer. Control Conf., San Diego, CA, pp. 1566-1573.
[8] De Luca, A.; Panzieri, S., An iterative scheme for learning gravity compensation in flexible robot arms, Automatica, 30, 993-1002, (1994) · Zbl 0800.93816
[9] Geng, Z., J. D. Lee, R. L. Carroll and L. H. Haynes (1990). Learning control system design based on 2-d theory—an application to parallel link manipulator. In Proc. 1990 IEEE Int. Conf. on Robotics and Automation, pp. 1510-1515.
[10] Hauser, J. (1987). Learning control for a class of nonlinear systems. In Proc. 26th IEEE Conf. on Decision and Control, Los Angles, CA, pp. 859-860.
[11] Heinzinger, G., Fenwick, D., B. Paden and F. Miyazaki (1989). Robust learning control. In Proc. 28th IEEE Conf. on Decision and Control, Tempa, FL, pp. 436-440.
[12] Heinzinger, G.; Fenwick, D.; Paden, B.; Miyazaki, F., Stability of learning control with disturbances and uncertain initial conditions, IEEE trans. automat. control, 37, 1, 110-114, (1992)
[13] Horowitz, R.; Messner, W.; Boals, M., Exponential convergence of a learning controller for robot manipulator, IEEE trans. automat. control, 36, 7, 890-894, (1991) · Zbl 0762.93062
[14] Ioannou, P.A.; Sun, J., Robust adaptive control, (1996), Prentice-Hall Englewood Cliffs, NJ
[15] Jang, T.-J.; Choi, C.-H.; Ahn, H.-S., Iterative learning control in feedback systems, Automatica, 31, 2, 243-245, (1995)
[16] Kuc, T.-Y.; Lee, J.S.; Nam, K., An iterative learning control theory for a class of nonlinear dynamic systems, Automatica, 28, 1215-1221, (1992) · Zbl 0775.93092
[17] Lee, H.-S.; Bien, Z., Study on robustness of iterative learning control with nonzero initial error, Int. J. of control, 64, 345-359, (1996) · Zbl 0850.93275
[18] Messner, W.; Horowitz, R.; Kao, W.; Boals, M., A new adaptive learning rule, IEEE trans. automat. control, 36, 2, 188-197, (1991) · Zbl 0758.93086
[19] Oh, S.; Bien, Z.; Suh, I., An iterative learning control method with application for the robot manipulator, IEEE J. robotics automation, 4, 5, 508-514, (1988)
[20] Sugie, T.; Ono, T., An iterative learning control law for dynamical systems, Automatica, 27, 4, 729-732, (1991)
[21] Yamada, M., L. Xu and O. Saito (1996). 2D model-following servo system. In Proc. 13th IFAC Triennial World Congress, San Francisco, pp. 291-296. · Zbl 0920.93024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.