Boyer, Charles P.; Galicki, Krzysztof; Mann, Benjamin M. A note on smooth toral reductions of spheres. (English) Zbl 0913.53020 Manuscr. Math. 95, No. 2, 149-158 (1998). The main result of this paper is the following Theorem. Let \(S\) be a 3-Sasakian manifold obtained by 3-Sasakian reduction of \(S^{4n-1}\) by a torus \(T^k\), and assume that \(S\) is neither a sphere nor a smooth quotient of a sphere by a finite group. If \(k>1\), then \(\dim S=7, 11, 15\). In addition, if \(k>4\), then \(\dim S=7\). This result extends previous results of the authors and E. G. Rees [Invent. Math. 131, 321-344 (1998; Zbl 0901.53033); Balkan J. Geom. Appl. 1, 1-7 (1996; Zbl 0889.53030)]. Reviewer: Ch.Baikoussis (Ioannina) MSC: 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) 57S25 Groups acting on specific manifolds Keywords:3-Sasakian structure; reduction; orbifold; Betti numbers Citations:Zbl 0901.53033; Zbl 0889.53030 PDF BibTeX XML Cite \textit{C. P. Boyer} et al., Manuscr. Math. 95, No. 2, 149--158 (1998; Zbl 0913.53020) Full Text: DOI EuDML OpenURL