×

Landau-Zener transitions through small electric eigenvalue gaps in the Born-Oppenheimer approximation. (English) Zbl 0915.35090

The authors study the quantum evolution associated to a molecular Schrödinger operator, in the Born-Oppenheimer limit where the mass of the nuclei tends to infinity. Assuming that the electronic levels present a gap which tends to \(0\) as the mass of the nuclei tends to infinity, they show that the corresponding transition probabilities are given by the Landau-Zener formula.

MSC:

35Q40 PDEs in connection with quantum mechanics
81V55 Molecular physics
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] J.D. Cole . Perturbation Methods in Applied Mathematics Waltham, Mass ., Toronto , London : Blaisdell 1968 . MR 246537 | Zbl 0162.12602 · Zbl 0162.12602
[2] J.-M. Combes , On the Born-Oppenheimer Approximation . In: International Symposium on Mathematical Problems in Theoretical Physics . ed. by H. Araki. Berlin , Heidelberg , New York : Springer 1975 . MR 673617 · Zbl 0372.47026
[3] J.-M. Combes , The Born-Oppenheimer Approximation . In: The Schrödinger Equation . ed. by W. Thirring, P. Urban. Wien , New York : Springer 1977 . MR 673617 | Zbl 0372.47026 · Zbl 0372.47026
[4] J.-M. Combes , P. Duclos and R. Seiler , The Born-Oppenheimer Approximation . In Rigorous Atomic and Molecular Physics . ed. by G. Velo, A. Wightman. New York : Plenum 1981 .
[5] I.S. Gradshteyn and I.M. Ryzhik , Table of Integrals, Series, and Products . New York : Academic Press 1980 . · Zbl 0521.33001
[6] G.A. Hagedorn , A Time-Dependent Born-Oppenheimer Approximation . Commun. Math. Phys. , Vol. 77 , 1980 , pp. 1 - 19 . Article | MR 588684 | Zbl 0448.70013 · Zbl 0448.70013
[7] G.A. Hagedorn , Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension . Ann. Inst. H. Poincaré Sect. A, Vol. 42 , 1985 , pp. 363 - 374 . Numdam | MR 801234 | Zbl 0900.81053 · Zbl 0900.81053
[8] G.A. Hagedorn , High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation I: Smooth Potentials . Ann. Math. , Vol. 124 , 1986 , pp. 571 - 590 , Erratum, Vol. 126 , 1987 , p. 219 . MR 866709 | Zbl 0619.35094 · Zbl 0619.35094
[9] G.A. Hagedorn , High Order Corrections to the Time-Independent Born-Oppenheimer Approximation I: Smooth Potentials . Ann. Inst. H. Poincaré Sect. A, Vol. 47 , 1987 , pp. 1 - 19 . Numdam | MR 912753 | Zbl 0621.41012 · Zbl 0621.41012
[10] G.A. Hagedorn , High Order Corrections to the Time-Independent Born-Oppenheimer Approximation II: Diatomic Coulomb Systems . Commun. Math. Phys. , Vol. 116 , 1988 , pp. 23 - 44 . Article | MR 937358
[11] G.A. Hagedorn , High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation II: Coulomb Systems . Commun. Math. Phys. , Vol. 117 , 1988 , pp. 387 - 403 . Article | MR 953829
[12] G.A. Hagedorn , Multiple Scales and the Time-Independent Born-Oppenheimer Approximation . In: Differential Equations and Applications . ed. by R. Aftabizadeh. New York : Marcel Dekker 1989 . MR 1026169 | Zbl 0751.47033 · Zbl 0751.47033
[13] G.A. Hagedorn , Electron Energy Level Crossings in the Time-Dependent Bom-Oppenheimer Approximation . Theor. Chimica Acta. , Vol. 77 , 1990 , pp. 163 - 190 .
[14] G.A. Hagedorn , Proof of the Landau-Zener Formula in an Adiabatic Limit with Small Eigenvalue Gaps . Commun. Math. Phys. , Vol. 136 , 1991 , pp. 433 - 449 . Article | MR 1099690 | Zbl 0723.35068 · Zbl 0723.35068
[15] G.A. Hagedorn , Time-Reversal Invariance and the Time-Dependent Born-Oppenheimer Approximation . In Forty More Years of Ramifications: Spectral Asymptotics and Its Applications, ( Discourses in Mathematics and Its Applications , No. 1 ). ed. by S. A. Fulling and F. J. Narcowich. College Station: Texas A & M University Mathematics Department 1992 . Zbl 0796.47053 · Zbl 0796.47053
[16] G.A. Hagedorn , Molecular Propagation Through Electron Energy Level Crossings , Memoirs Amer. Math. Soc. , Vol. 536 , 1994 . MR 1234882 | Zbl 0833.92025 · Zbl 0833.92025
[17] G.A. Hagedorn , Effects of Electron Energy Level Crossings on Molecular Propagation . Differential Equations and Mathematical Physics . Proceedings of the International Conference. Univ. of Alabama at Birmingham , March 13-17, 1994 . ed by I. Knowles. 1995 , pp. 85 - 95 . MR 1703574 | Zbl 0929.35125 · Zbl 0929.35125
[18] G.A. Hagedorn , Classification and Normal Forms for Avoided Crossings of Quantum Mechanical Energy Levels . 1995 Preprint, Virginia Polytechnic Institute and State University . MR 1620277 · Zbl 0956.81014
[19] G.A. Hagedorn and A. Joye , Molecular Propagation through Small Avoided Crossings of Electron Energy Levels . 1996 Preprint, Virginia Polytechnic Institute and State University . MR 1668071 · Zbl 0965.81138
[20] J.S. Herrin , The Born-Oppenheimer Approximation: Straight-Up and with a Twist . Ph. D. Dissertation , University of Virginia , 1990 . · Zbl 0879.47046
[21] A. Joye , Non-trivial Prefactors in Adiabatic Transition Probabilities Induced by High Order Complex Degeneracies . J. Phys. A , Vol. 26 , 1993 , pp. 6517 - 6540 . MR 1253052
[22] A. Joye , Proof of the Landau-Zener Formula . Asymptotic Analysis , Vol. 9 , 1994 , pp. 209 - 258 . MR 1295294 | Zbl 0814.35109 · Zbl 0814.35109
[23] A. Joye , Exponential Asymptotics in a Singular Limit for n-Level Scattering Systems . Preprint CNRS Marseille CPT-95/P.3216, SIAM J. Math. Anal. (to appear). MR 1443614 · Zbl 0991.34071
[24] A. Joye , H. Kunz and C.-E. Pfister , Exponential Decay and Geometric Aspect of Transition Probabilities in the Adiabatic Limit . Ann. Phys. , Vol. 208 , 1991 , pp. 299 - 332 . MR 1110431 | Zbl 0875.60022 · Zbl 0875.60022
[25] A. Joye , G. Mileti and C-E. Paster , Interferences in Adiabatic Transition Probabilities Mediated by Stokes Lines . Phys. Rev. A , Vol. 44 , 1991 , pp. 4280 - 4295 .
[26] A. Joye and C-E. . Pfister , Full Asymptotic Expansion of Transition Probabilities in the Adiabatic Limit . J. Phys. A. , Vol. 24 , 1991 , pp. 753 - 766 . MR 1104171 | Zbl 0722.60086 · Zbl 0722.60086
[27] A. Joye and C-E. . Pfister , Absence of Geometrical Correction to the Landau-Zener Formula . Phvs. Lett. A , Vol. 169 , 1992 , pp. 62 - 66 .
[28] A. Joye and C-E. . Pfister , Superadiabatic Evolution and Adiabatic Transition Probability between Two Non-Degenerate Levels Isolated in the Spectrum . J. Math. Phys. , Vol. 34 , 1993 , pp. 454 - 479 . MR 1201014 | Zbl 0776.35056 · Zbl 0776.35056
[29] A. Joye , and C-E. . Pfister , Non-abelian Geometric Effect in Quantum Adiabatic Transitions . Phys. Rev. A , Vol. 48 , 1993 , pp. 2598 - 2608 . MR 1240911
[30] A. Joye and C-E. . Pfister , Quantum Adiabatic Evolution , in Leuven Conference Proceedings; On the Three Levels Micro-Meso- and Macro-Approaches in Physics , M. Fannes, C. Meas, A. Verbeure eds., Plenum , New York , 1994 , pp. 139 - 148 . Zbl 0884.47053 · Zbl 0884.47053
[31] A. Joye and C-E. . Pfister , Semi-Classical Asymptotics beyond All Orders for Simple Scattering Systems , SIAM J. Math. Anal. , Vol. 26 , 1995 , pp. 944 - 977 . MR 1338369 | Zbl 0830.34047 · Zbl 0830.34047
[32] A. Kargol , The Infinite Time Limit for the Time-Dependent Born-Oppenheimer Approximation . Commun. Math. Phys. , Vol. 166 , 1994 , pp. 129 - 148 . Article | MR 1309544 | Zbl 0821.47051 · Zbl 0821.47051
[33] T. Kato , On the Adiabatic Theorem in Quantum Mechanics . J. Phys. Soc. Jpn. , Vol. 5 , 1950 , pp. 435 - 439 .
[34] M. Klein , On the Mathematical Theory of Predissociation . Ann. Phys. , Vol. 178 , 1987 , pp. 48 - 73 . MR 913151 | Zbl 0649.35024 · Zbl 0649.35024
[35] M. Klein , A. Martinez , R. Seiler and X.P. Wang , On the Born-Oppenheimer Expansion for Polyatomic Molecules . Commun. Math. Phys. , Vol. 143 , 1992 , pp. 607 - 639 . Article | MR 1145603 | Zbl 0754.35099 · Zbl 0754.35099
[36] M. Klein , A. Martinez and X.P. Wang , On the Born-Oppenheimer Approximation of Wave Operators in Molecular Scattering Theory . Université de Nantes preprint, 1992 . · Zbl 0778.35088
[37] Ph.A. Martin and G. Nenciu , Semi-Classical Inelastic S-Matrix for One-Dimensional N-States Systems , Rev. Math. Phys. , Vol. 7 , 1995 , pp. 193 - 242 . MR 1317340 | Zbl 0835.34098 · Zbl 0835.34098
[38] A. Martinez , Développements Asymptotiques et Effet Tunnel dans l’Approximation de Born-Oppenheimer . Ann. Inst. H. Poincaré Sect. A, Vol. 50 , 1989 , pp. 239 - 257 . Numdam | MR 1017965 | Zbl 0689.35063 · Zbl 0689.35063
[39] A. Martinez , Développements Asymptotiques dans l’Approximation de Bom-Oppenheimer . Journées E. D. P. de St. Jean-de-Monts ( 1988 ). Numdam | Zbl 0699.35209 · Zbl 0699.35209
[40] A. Martinez , Resonances dans l’Approximation de Born-Oppenheimer I . J. Diff. Eq. , Vol. 91 . 1991 , pp. 204 - 234 . MR 1111174 | Zbl 0737.35046 · Zbl 0737.35046
[41] A. Martinez , Resonances dans l’Approximation de Born-Oppenheimer II. Largeur de Résonances . Commun. Math. Phys. , Vol. 135 , 1991 , pp. 517 - 530 . Article | MR 1091576 | Zbl 0737.35047 · Zbl 0737.35047
[42] P. Pettersson , WKB Expansions for Systems of Schrödinger Operators with Crossing Eigenvalues . University of Lund PhD Thesis , 1993 . · Zbl 0885.35104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.