zbMATH — the first resource for mathematics

The theory of multiresolution analysis frames and applications to filter banks. (English) Zbl 0915.42029
Summary: The notion of a frame multiresolution analysis (FMRA) is formulated. An FMRA is a natural extension to affine frames of the classical notion of a multiresolution analysis (MRA). The associated theory of FMRAs is more complex than that of MRAs. A basic result of the theory is a characterization of frames of integer translates of a function \(\phi\) in terms of the discontinuities and zero sets of a computable periodization of the Fourier transform of \(\phi\). There are subband coding filter banks associated with each FMRA. Mathematically, these filter banks can be used to construct new frames for finite energy signals. As with MRAs, the FMRA filter banks provide perfect reconstruction of all finite energy signals in any one of the successive approximation subspaces \(V_j\) defining the FMRA. In contrast with MRAs, the perfect reconstruction filter bank associated with an FMRA can be narrow band. Because of this feature, in signal processing FMRA filter banks achieve quantization noise reduction simultaneously with reconstruction of a given narrow-band signal. \(\copyright\) Academic Press.

42C15 General harmonic expansions, frames
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI
[1] Aldroubi, A.; Unser, M., Families of multiresolution and wavelet spaces with optimal properties, Numer. Funct. Anal. Optim., 14, 417-446, (1993) · Zbl 0798.94007
[2] Benedetto, J. J., Irregular sampling and frames, Wavelets: A Tutorial in Theory and Applications, (1992), Academic Press Boston, p. 445-507 · Zbl 0777.42009
[3] Benedetto, J. J., Frame decompositions, sampling, and uncertainty principle inequalities, (Benedetto, J. J.; Frazier, M. W., Wavelets: Mathematics and Applications, (1994), CRC Press Boca Raton) · Zbl 1090.94516
[4] Benedetto, J. J., Harmonic Analysis and Applications, (1996), CRC Press Boca Raton · Zbl 0860.43001
[5] Benedetto, J. J.; Heller, W., Irregular sampling and the theory of frames, Mat. Note, 10, 103-125, (1990) · Zbl 0777.42008
[6] Benedetto, J. J.; Li, S., Multiresolution analysis frames with applications, ICASSP’93, (April 26-30, 1993), p. 304-307
[7] Benedetto, J. J.; Li, S., Subband coding and noise reduction in multiresolution analysis frames, Proceedings of SPIE Conference on Mathematical Imaging, (July 1994)
[8] J. J. Benedetto, A. Teolis, Nonlinear methods and apparatus for coding and decoding acoustic signals with data compression and noise suppression using cochleor filters, wavelet analysis, and irregular sampling reconstructions, U.S. Patent 5,388,182, 1995
[9] Benedetto, J. J.; Walnut, D. F., Gabor frames forL^{2}, (Benedetto, J. J.; Frazier, M. W., Wavelets: Mathematics and Applications, (1994), CRC Press Boca Raton) · Zbl 0887.42025
[10] Burt, P. J.; Adelson, E. H., The Laplacian pyramid as a compact image code, IEEE Trans. Comm., COM-31, 532-540, (1983)
[11] Christensen, O., Frames and pseudo-inverses, J. Math. Anal. Appl., 195, 401, (1995) · Zbl 0845.47002
[12] Chui, C. K.; Wang, J. Z., A cardinal spline approach to wavelets, Proc. Amer. Math. Soc., 113, 785-793, (1991) · Zbl 0755.41008
[13] Cohen, A., Ondelettes, analyses multirésolutions et filtres miroir en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, 439-459, (1990) · Zbl 0736.42021
[14] Cohen, A., Biorthogonal wavelets, (Chui, C. K., Wavelets: A Tutorial in Theory and Applications, (1992), Academic Press Boston), 123-152 · Zbl 0760.42018
[15] Daubechies, I., The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36, 961-1005, (1990) · Zbl 0738.94004
[16] Daubechies, I., Ten Lectures on Wavelets, (1992), SIAM Philadelphia · Zbl 0776.42018
[17] Daubechies, I.; Grossmann, A.; Meyer, Y., Painless nonorthogonal expansions, J. Math. Phys., 27, 1271-1283, (1986) · Zbl 0608.46014
[18] deBoor, C.; DeVore, R.; Ron, A., On the construction of multivariate (pre)wavelets, Constr. Approx., 9, 123-166, (1993) · Zbl 0773.41013
[19] Duffin, R.; Schaeffer, A., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72, 341-366, (1952) · Zbl 0049.32401
[20] Feauveau, J.-C., Nonorthogonal multiresolution analysis using wavelets, (Chui, C. K., Wavelets: A Tutorial in Theory and Applications, (1992), Academic Press Boston), 153-178 · Zbl 0760.42019
[21] Feichtinger, H. G.; Grochenig, K., Theory and practice of irregular sampling, (Benedetto, J. J.; Frazier, M. W., Wavelets: Mathematics and Applications, (1994), CRC Press Boca Raton) · Zbl 1090.94524
[22] Gopinath, R. A.; Burrus, C. S., Wavelet transforms and filter banks, (Chui, C. K., Wavelets: A Tutorial in Theory and Applications, (1992), Academic Press Boston), 603-654 · Zbl 0776.42022
[23] R. A. Haddad, K. Park, N. Uzun, Optimum (MSE) design of quantized M-band filter banks, 1994
[24] Heil, C.; Walnut, D., Continuous and discrete wavelet transforms, SIAM Rev., 31, 628-666, (1989) · Zbl 0683.42031
[25] Lawton, W. M., Tight frames of compactly supported affine wavelets, J. Math. Phys., 31, 1898-1901, (1990) · Zbl 0708.46020
[26] Lemarié, P. G., Fonctions a support compact dans LES analyses multirésolutions, Rev. Mat. Iberoamericana, 7, 157-182, (1991) · Zbl 0753.42014
[27] Li, S., A generalized multiresolution structure and associated multirate systems, Proceedings, IEEE-SP International Symposium TF-TS, (1994), p. 40-43
[28] Li, S., On general frame decompositions, Numer. Funct. Anal. Optim., 16, 1181-1191, (1995) · Zbl 0849.42023
[29] S. Li, A theory of generalized multiresolution structure and affine pseudo frames, 1995
[30] Li, S.; Healy, D. M., A parametric class of discrete Gabor expansion, IEEE Trans. Signal Process., 44, 201-211, (1996)
[31] Mallat, S., Multiresolution approximations and wavelet orthonormal basis ofL^{2}R, Trans. Amer. Math. Soc., 315, 69-87, (1989) · Zbl 0686.42018
[32] Mallat, S., A theory of multiresolution signal decomposition: the wavelet representation, IEEE PAMI, 11, 674-693, (1989) · Zbl 0709.94650
[33] Meyer, Y., Wavelets and Operators, (1992), Cambridge Univ. Press Cambridge
[34] Micchelli, C. A., Using the refinement equation for the construction of prewavelets, Numer. Algorithms, 1, 75-116, (1991) · Zbl 0759.65005
[35] A. Ron, Z. Shen, Affine Systems inL_{2}R^{d}): The Analysis of the Affine Operator, 1996
[36] Smith, M. J.T.; Barnwell, T. P., Exact reconstruction for tree structured subband coders, IEEE ASSP, 34, 434-441, (1986)
[37] Tabatabai, A., Optimum analysis/synthesis filter bank structures with applications to subband coding systems, Proceedings, IEEE ICASSP’88, (1988), p. 823-826
[38] Vaidyanathan, P. P., Multirate Systems and Filter Banks, (1993), Prentice Hall Englewood Cliffs · Zbl 0784.93096
[39] Vandendorpe, L., Optimized quantization for image subband coding, Signal Process. Image Comm., 4, 65-80, (1991)
[40] Vetterli, M.; Kovačević, J., Wavelets and Subband Coding, (1995), Prentice Hall Englewood Cliffs · Zbl 0885.94002
[41] Westerink, P. H.; Biemond, J.; Boekee, D. E., Scalar quantization error analysis for image subband coding using Qmf’s, IEEE Trans. Signal Process., 40, 421-428, (1992)
[42] Young, R., An Introduction to Nonharmonic Fourier Series, (1980), Academic Press New York · Zbl 0493.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.