×

zbMATH — the first resource for mathematics

A Godunov-type finite volume method for the system of shallow water equations. (English) Zbl 0916.76051
Summary: We develop a finite volume based numerical algorithm for the numerical solution of the system of shallow water equations. The algorithm is a Godunov-type method and solves the Riemann problem approximately using Roe’s technique. The algorithm is developed in two dimensions with arbitrary triangulations and conserves all primary variables such as mass and momentum. The procedure is implemented on some simple test cases and some complex coastal flow problems. The algorithm is shown to produce excellent results without spurious oscillations, and agrees very well with known analytical results. Additionally, the basic Godunov method is extended to second-order accuracy through a slope-limiter-type algorithm.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Software:
SHASTA; ADCIRC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alcrudo, F.; Garcia-Navarro, P., A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations, Int. J. numer. methods fluids, 16, 489-505, (1993) · Zbl 0766.76067
[2] Bell, J.B.; Dawson, C.N.; Shubin, G.R., An unsplit, higher-order Godunov method for scalar conservation laws in two dimensions, J. comput. phys., 74, 1-24, (1988) · Zbl 0684.65088
[3] Boris, J.P.; Book, D.L., Flux corrected transport, I, SHASTA, A fluid transport algorithm that works, J. comput. phys., 11, 38-69, (1973) · Zbl 0251.76004
[4] Colella, P.; Woodward, P.R., The piecewise parabolic method (PPM) for gas dynamical calculations, J. comput. phys., 54, 174-201, (1984) · Zbl 0531.76082
[5] Colella, P., A direct Eulerian MUSCL scheme for gas dynamics, SIAM J. sci. stat. comput., 6, 104-177, (1985) · Zbl 0562.76072
[6] Godunov, S.K., A difference scheme for numerical computation of discontinuous solution of hydrodynamics equations, Math. sbornik, 47, 271-306, (1959), (in Russian) Translated US Joint Publ. Res. Service, JPRS 7226 (1969) · Zbl 0171.46204
[7] Goodman, J.B.; LeVeque, R.J., A geometric approach to high resolution TVD schemes, SIAM J. numer. anal., 25, 268-284, (1988) · Zbl 0645.65051
[8] Harten, A., High resolution schemes for hyperbolic conservation laws, J. comput. phys., 49, 357-393, (1983) · Zbl 0565.65050
[9] Harten, A.; Engquist, B.; Osher, S.J.; Chakravarthy, S.R., Some results on uniformly high-order accurate essentially nonoscillatory schemes, J. appl. numer. math., 2, 347-377, (1986) · Zbl 0627.65101
[10] Harten, A., ENO schemes with subcell resolution, J. comput. phys., 83, 148-184, (1987) · Zbl 0696.65078
[11] Harten, A.; Engquist, B.; Osher, S.J.; Chakravarthy, S.R., Uniformly high order accurate essentially non-oscillatory schemes, III, J. comput. phys., 71, 231, (1987) · Zbl 0652.65067
[12] Hirsch, C., ()
[13] Ippen, A.T., Mechanics of supercritical flow, Trans. ASCE, 116, 268-295, (1951)
[14] Kawahara, M.; Hirano, H.; Tsuhora, K.; Iwagaki, K., Selective lumping finite element method for shallow water equations, Int. J. numer. method engrg., 2, 99-112, (1982)
[15] King, I.P.; Norton, W.R., Recent application of RMA’s finite element models for two-dimensional hydrodynamics and water quality, ()
[16] Kinnmark, I., The shallow water wave equations: formulation, analysis and application, () · Zbl 0588.76001
[17] LeVeque, R.J., Numerical methods for conservation laws, (1992), Birkhauser Verlag · Zbl 0847.65053
[18] Luettich, R.A.; Westerink, J.J.; Scheffner, N.W., ()
[19] Lynch, D.R.; Gray, W.G., Analytic solution for computer flow model testing, ASCE J. hydraulic div., 104, 1409-1428, (1978)
[20] Lynch, D.R.; Gray, W., A wave equation model for finite element tidal computations, Comput. fluids, 7, 207-288, (1979) · Zbl 0421.76013
[21] Osher, S.; Chakravarthy, S.R., High resolution schemes and the entropy condition, SIAM J. numer. anal., 21, 955-984, (1984) · Zbl 0556.65074
[22] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 43, 357-372, (1981) · Zbl 0474.65066
[23] Shu, C.-W.; Osher, S.J., Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. comput. phys., 77, 439-471, (1988) · Zbl 0653.65072
[24] Shu, C.-W.; Osher, S.J., Efficient implementation of essentially nonoscillatory shock-capturing schemes, II, J. comput. phys., 83, 32, (1989) · Zbl 0674.65061
[25] Szymkiewicz, R., Oscillation-free solution of shallow water equations for nonstaggered grid, J. hyd. engrg., 119, 10, 1118-1137, (1993)
[26] Van Leer, B., Towards the ultimate conservative difference schemes, II. monotonicity and conservation combined in a second order scheme, J. comput. phys., 14, 361, (1974) · Zbl 0276.65055
[27] Van Leer, B., Towards the ultimate conservative difference schemes, III. upstream-centered finite-difference schemes for ideal compressible flow, J. comput. phys., 23, 263, (1977) · Zbl 0339.76039
[28] Van Leet, B., Towards the ultimate conservative difference scheme, IV. A new approach to numerical convection, J. comput. phys., 23, 276, (1977) · Zbl 0339.76056
[29] Van Leer, B., Towards the ultimate conservative difference scheme, V.A. second-order sequel to Godunov’s method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[30] Watters, R.A., Numerically induced oscillations in finite element approximations to shallow water equations, Int. J. numer. meth: fluids, 3, 591-604, (1983) · Zbl 0526.76028
[31] Weiyan, T., Shallow water hydrodynamics, (1992), Elsevier Amsterdam
[32] Zalesak, S.T., Fully multidimensional flux corrected transport algorithms for fluids, J. comput. phys., 31, 335-362, (1979) · Zbl 0416.76002
[33] Zienkiewicz, O.C.; Ortiz, P., A split-characteristic based finite element model for the shallow water equations, Int. J. numer. methods fluids, 20, 1061-1080, (1995) · Zbl 0836.76052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.