Charrier, Pierre; Dubroca, Bruno; Feugeas, Jean-Luc; Mieussens, Luc Discrete-velocity models for kinetic nonequilibrium flows. (Modèles à vitesses discrètes pour le calcul d’écoulements hors équilibre cinétique.) (French. Abridged English version) Zbl 0917.35101 C. R. Acad. Sci., Paris, Sér. I, Math. 326, No. 11, 1347-1352 (1998). Summary: We study the minimum entropy principle on a discrete-velocity set. We use this result for defining discrete-velocity models of BGK equation and moment systems of Levermore. Finally, we prove some properties of these models. Cited in 6 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 39A12 Discrete version of topics in analysis 76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics 82C40 Kinetic theory of gases in time-dependent statistical mechanics Keywords:transport equation; Boltzmann equation; discrete entropy; minimum entropy principle; discrete-velocity set; moment systems of Levermore PDF BibTeX XML Cite \textit{P. Charrier} et al., C. R. Acad. Sci., Paris, Sér. I, Math. 326, No. 11, 1347--1352 (1998; Zbl 0917.35101) Full Text: DOI OpenURL