Cheon, G.-S.; Johnson, C. R.; Lee, S.-G.; Pribble, E. J. The possible numbers of zeros in an orthogonal matrix. (English) Zbl 0918.15007 Electron. J. Linear Algebra 5, 19-23 (1999). It is shown that for \(n\geq 2\) there is an \(n\times n\) indecomposable orthogonal matrix with exactly \(k\) entries equal to zero if and only if \(0\leq k\leq (n-2)^2\). Reviewer: G.Bonanno (Davis) Cited in 6 Documents MSC: 15B57 Hermitian, skew-Hermitian, and related matrices 05C50 Graphs and linear algebra (matrices, eigenvalues, etc.) Keywords:numbers of zeros; indecomposable matrix; orthogonal matrix PDF BibTeX XML Cite \textit{G. S. Cheon} et al., Electron. J. Linear Algebra 5, 19--23 (1999; Zbl 0918.15007) Full Text: DOI EuDML EMIS OpenURL