×

\(p\)-adic functional analysis. Proceedings of the 5th international conference in Poznań, Poland, June 1–5, 1998. (English) Zbl 0919.00056

Lecture Notes in Pure and Applied Mathematics. 207. New York, NY: Marcel Dekker. viii, 331 p. (1999).

Show indexed articles as search result.

The articles of this volume will be reviewed individually. The preceding conference (4, 1996) has been reviewed (see Zbl 0869.00037).
Indexed articles:
Aguayo, J.; De Grande-De Kimpe, N.; Navarro, S., Strict topologies and duals in spaces of functions, 1-10 [Zbl 0941.46043]
Araujo, J., Ultrametric weakly separating maps with closed range, 11-14 [Zbl 0944.47048]
Boussaf, K.; Hemdaoui, M., Analytic spectrum of an algebra of strictly analytic \(p\)-adic functions, 15-27 [Zbl 0947.46055]
Boutabaa, Abdelbaki; Escassut, Alain, An improvement of the \(p\)-adic Nevanlinna theory and application to meromorphic functions, 29-38 [Zbl 0937.30028]
Christol, G.; Mebkhout, Z.; Schikhof, W. H., An application of \(c\)-compactness., 39-44 [Zbl 1053.46055]
Diarra, Bertin, On the integrity of the dual algebra of some complete ultrametric Hopf algebras, 45-64 [Zbl 0943.46047]
Dragovich, Branko, On \(p\)-adic power series, 65-75 [Zbl 0938.11060]
Endo, Mikihiko, Hartogs-Stawski’s theorem in discrete valued fields, 77-96 [Zbl 0954.32017]
De Grande-De Kimpe, N.; Khrennikov, A.; van Hamme, L., The Fourier transform for \(p\)-adic tempered distributions, 97-112 [Zbl 0940.46048]
van Hamme, L., On the Mahler coefficients of the logarithmic derivative of the \(p\)-adic gamma function, 113-125 [Zbl 1018.11060]
Katsaras, A. K.; Benekas, V., \(p\)-adic (dF)-spaces, 127-147 [Zbl 0949.46040]
Kąkol, Jerzy; Gilsdorf, Thomas, On the weak basis theorems for \(p\)-adic locally convex spaces, 149-165 [Zbl 0949.46039]
Kochubei, Anatoly N., Fractional differentiation operator over an infinite extension of a local field, 167-178 [Zbl 1009.47018]
Kubzdela, A., Some remarks on duality of locally convex \(B_k\)-modules, 179-187 [Zbl 0938.46058]
Mainetti, Nicolas, Spectral properties of \(p\)-adic Banach algebras, 189-210 [Zbl 0943.46045]
Narici, Lawrence; Beckenstein, Edward, Surjective isometries of spaces of continuous functions, 211-223 [Zbl 0938.46057]
Natarajan, P. N., On the algebras \((c,c)\) and \((\ell_\alpha,\ell_\alpha)\) in non-archimedean fields, 225-231 [Zbl 0943.47059]
Ochsenius, H.; Schikhof, W. H., Banach spaces over fields with an infinite rank valuation, 233-293 [Zbl 0938.46056]
Perez-Garcia, C.; Schikhof, W. H., The \(p\)-adic Banach-Dieudonné theorem and semicompact inductive limits, 295-307 [Zbl 0943.46046]
de Smedt, Stany, Mahler’s and other bases for \(p\)-adic continuous functions, 309-322 [Zbl 0940.46049]
Verdoodt, Ann, Orthonormal bases for non-archimedean Banach spaces of continuous functions, 323-331 [Zbl 0940.46050]

MSC:

00B25 Proceedings of conferences of miscellaneous specific interest
46-06 Proceedings, conferences, collections, etc. pertaining to functional analysis
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)

Citations:

Zbl 0869.00037
PDF BibTeX XML Cite