×

Tame and wild kernels of quadratic imaginary number fields. (English) Zbl 0919.11079

Assuming the Lichtenbaum conjecture the authors compute the conjectural order and structure of the tame kernel \(K_2(o_F)\) and the wild kernel \(W_F\) for imaginary quadratic number fields \(F\) of discriminant \(d > -5000\).

MSC:

11R70 \(K\)-theory of global fields
19F27 Étale cohomology, higher regulators, zeta and \(L\)-functions (\(K\)-theoretic aspects)
11Y40 Algebraic number theory computations
19C99 Steinberg groups and \(K_2\)
11R11 Quadratic extensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. Bernardi. D. Batut, H. Cohen and M. Olivier, GP-PARI, a computer package.
[2] Spencer Bloch, Applications of the dilogarithm function in algebraic \?-theory and algebraic geometry, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 103 – 114. · Zbl 0416.18016
[3] Armand Borel, Cohomologie de \?\?_{\?} et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 4, 613 – 636 (French). Armand Borel, Errata: ”Cohomologie de \?\?_{\?} et valeurs de fonctions zêta aux points entiers” [Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 4, 613 – 636; MR 58 #22016], Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 2, 373 (French). · Zbl 0382.57027
[4] Armand Borel, Values of zeta-functions at integers, cohomology and polylogarithms, Current trends in mathematics and physics, Narosa, New Delhi, 1995, pp. 1 – 44. · Zbl 0897.11035
[5] Jerzy Browkin, The functor \?\(_{2}\) for the ring of integers of a number field, Universal algebra and applications (Warsaw, 1978) Banach Center Publ., vol. 9, PWN, Warsaw, 1982, pp. 187 – 195.
[6] Jerzy Browkin, On the \?-rank of the tame kernel of algebraic number fields, J. Reine Angew. Math. 432 (1992), 135 – 149. · Zbl 0754.11037 · doi:10.1515/crll.1992.432.135
[7] J. Browkin and A. Schinzel, On Sylow 2-subgroups of \?\(_{2}\)\?_{\?} for quadratic number fields \?, J. Reine Angew. Math. 331 (1982), 104 – 113. · Zbl 0493.12013 · doi:10.1515/crll.1982.331.104
[8] P. E. Conner and J. Hurrelbrink, Class number parity, Series in Pure Mathematics, vol. 8, World Scientific Publishing Co., Singapore, 1988. · Zbl 0743.11061
[9] H. Gangl, Werte von Dedekindschen Zetafunktionen, Dilogarithmuswerte und Pflasterungen des hyperbolischen Raumes, Diplomarbeit Bonn, 1989.
[10] Daniel R. Grayson, Dilogarithm computations for \?\(_{3}\), Algebraic \?-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 168 – 178.
[11] Manfred Kolster, Thong Nguyen Quang Do, and Vincent Fleckinger, Twisted \?-units, \?-adic class number formulas, and the Lichtenbaum conjectures, Duke Math. J. 84 (1996), no. 3, 679 – 717. · Zbl 0863.19003 · doi:10.1215/S0012-7094-96-08421-5
[12] Stephen Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic \?-theory, Algebraic \?-theory, II: ”Classical” algebraic \?-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 489 – 501. Lecture Notes in Math., Vol. 342.
[13] B. Mazur and A. Wiles, Class fields of abelian extensions of \?, Invent. Math. 76 (1984), no. 2, 179 – 330. · Zbl 0545.12005 · doi:10.1007/BF01388599
[14] Hou Rong Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), no. 2, 153 – 169. · Zbl 0826.11055
[15] Hou Rong Qin, Computation of \?\(_{2}\)\?[\sqrt -6], J. Pure Appl. Algebra 96 (1994), no. 2, 133 – 146. · Zbl 0808.11066 · doi:10.1016/0022-4049(94)90124-4
[16] Hourong Qin, Computation of \?\(_{2}\)\?[(1+\sqrt -35)/2], Chinese Ann. Math. Ser. B 17 (1996), no. 1, 63 – 72. A Chinese summary appears in Chinese Ann. Math. Ser. A 17 (1996), no. 1, 121. · Zbl 0851.19002
[17] Mariusz Skałba, Generalization of Thue’s theorem and computation of the group \?\(_{2}\)\?_{\?}, J. Number Theory 46 (1994), no. 3, 303 – 322. · Zbl 0808.11065 · doi:10.1006/jnth.1994.1016
[18] A. A. Suslin, Algebraic \?-theory of fields, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 222 – 244.
[19] H. Bass and J. Tate, The Milnor ring of a global field, Algebraic \?-theory, II: ”Classical” algebraic \?-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972) Springer, Berlin, 1973, pp. 349 – 446. Lecture Notes in Math., Vol. 342. · Zbl 0299.12013 · doi:10.1007/BFb0073733
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.