A novel thermal model for the lattice Boltzmann method in incompressible limit. (English) Zbl 0919.76068

Summary: A novel lattice Boltzmann thermal model is proposed for studying thermohydrodynamics in incompressible limit. The new model introduces an internal energy density distribution function to simulate the temperature field. The macroscopic density and velocity fields are still simulated using the density distribution function. Compared with the multispeed thermal lattice Boltzmann models, the current scheme is numerically more stable. In addition, the new model can incorporate viscous heat dissipation and compression work done by the pressure, in contrast to the passive-scalar-based thermal lattice Boltzmann models. Numerical simulations of Couette flow with a temperature gradient and Rayleigh-Bénard convection agree well with analytical solutions and benchmark data.


76M28 Particle methods and lattice-gas methods
76A02 Foundations of fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82-08 Computational methods (statistical mechanics) (MSC2010)
Full Text: DOI


[1] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech., 30, 329 (1998) · Zbl 1398.76180
[2] Martı́nez, D. O.; Matthaeus, W. H.; Chen, S.; Montgomery, D. C., Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics, Phys. Fluids, 6, 1285 (1994) · Zbl 0826.76069
[3] Hou, S.; Zou, Q.; Chen, S.; Doolen, G. D.; Cogley, A., Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., 118, 329 (1995) · Zbl 0821.76060
[4] He, X.; Luo, L. S.; Dembo, M., Some progress in lattice Boltzmann method. I. nonuniform mesh grids, J. Comput. Phys., 129, 357 (1996) · Zbl 0868.76068
[5] He, X.; Doolen, G. D., Lattice Boltzmann method on curvilinear coordinates system: Flow around a circular cylinder, J. Comput. Phys., 134, 306 (1997) · Zbl 0886.76072
[6] Gunstensen, A. K.; Rothman, D. H.; Zaleski, S.; Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, 43, 4320 (1991)
[7] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815 (1993)
[8] Swift, M. R.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75, 830 (1995)
[9] He, X.; Shan, X.; Doolen, G. D., A discrete Boltzmann equation model for non-ideal gases, Phys. Rev. E, 57, R13 (1998)
[10] Ferreol, B., Lattice-Boltzmann simulations of flow through Fontainebleau sandstone, Transport in Porous Media, 20, 3 (1995)
[11] McNamara, G.; Alder, B., Analysis of the lattice Boltzmann treatment of hydrodynamics, Physica A, 194, 218 (1993) · Zbl 0941.82527
[12] Alexander, F. J.; Chen, S.; Sterling, J. D., Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, 47, R2249 (1993)
[13] Chen, Y.; Ohashi, H.; Akiyama, M., Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations, Phys. Rev. E, 50, 2776 (1994)
[14] McNamara, G.; Garcia, A. L.; Alder, B. J., Stabilization of thermal lattice Boltzmann models, J. Statist. Phys., 81, 395 (1995) · Zbl 1106.82353
[15] Pavlo, P.; Vahala, G.; Vahala, L., Higher order isotropic velocity grids in lattice methods, Phys. Rev. Lett., 80, 3960 (1998)
[16] Pavlo, P.; Vahala, G.; Vahala, L.; Soe, M., Linear-stability analysis of thermo-lattice Boltzmann models, J. Comput. Phys., 139, 79 (1998) · Zbl 0903.76080
[17] Bartoloni, A.; Battista, C.; Cabasino, S., LBE simulation of Rayleigh-Bénard convection on the APE100 parallel processor, Int. J. Mod. Phys. C, 4, 993 (1993)
[18] Shan, X., Solution of Rayleigh-Bénard convection using a lattice Boltzmann method, Phys. Rev. E, 55, 2780 (1997)
[19] Eggels, J. G.M.; Somers, J. A., Numerical simulation of free convective flow using the lattice Boltzmann scheme, J. Heat Fluid Flow, 16, 357 (1995)
[20] He, X.; Luo, L., A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 55, R6333 (1997)
[21] Abe, T., Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation, J. Comput. Phys., 131, 241 (1997) · Zbl 0877.76062
[22] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component system, Phys. Rev., 94, 511 (1954) · Zbl 0055.23609
[23] Cercignani, C., The Boltzmann equation and its applications, Applied Mathematical Sciences, 61 (1988) · Zbl 0646.76001
[24] Sterling, J. D.; Chen, S., Stability analysis of lattice Boltzmann methods, J. Comput. Phys., 123, 196 (1996) · Zbl 0840.76078
[25] Cao, N.; Chen, S.; Jin, S.; Martı́nez, D., Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. Rev. E, 55, R21 (1997)
[26] Zou, Q.; He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, 1591 (1997) · Zbl 1185.76873
[27] Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2, 331 (1949) · Zbl 0037.13104
[28] Busse, F. H., Transition to turbulence in Rayleigh-Bénard convection, Hydrodynamic Instability and the Transition to Turbulence (1986) · Zbl 0459.76037
[29] Reid, W. H.; Harris, D. L., Some further results on the Bénard Problem, Phys. Fluids, 1, 102 (1958) · Zbl 0082.39701
[30] Clever, R. M.; Busse, F. H., Transition to time-dependent convection, J. Fluid Mech., 65, 625 (1974) · Zbl 0291.76019
[31] He, X.; Luo, L.; Dembo, M., Some progress in lattice Boltzmann method: Reynolds number enhancement in simulations, Physica A, 239, 276 (1997)
[32] He, X.; Luo, L., Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. Statist. Phys., 88, 927 (1997) · Zbl 0939.82042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.