×

zbMATH — the first resource for mathematics

Notes on the Riemann zeta-function. I. (Notes sur la fonction \(\zeta\) de Riemann. I.) (French) Zbl 0920.11062
Let \(S_n(t)=\sum^n_{k=1}\mu(k)\{{1\over kt}\}\) and \(B_n(t)= S_n (t)-n\{{1\over nt}\} \sum^n_{k=1} {\mu(k)\over k}\). The authors prove the following extension of theorems of A. Beurling [Proc. Natl. Acad. Sci. USA 41, 312-314 (1955; Zbl 0065.30303)] and H. Bercovici and C. Foias, Isr. J. Math. 48, 57-68 (1984; Zbl 0569.46011)]. For every real \(p\geq 1\) the following three statements are equivalent
a) The Riemann zeta function does not vanish in the half plane \(\text{Re} s>1/p\).
b) The sequence of functions \((B_n)\) converges to \(-1\) in \(L^r(0,1)\) for every \(r\) with \(1<r<p\).
c) The sequence of functions \((S_n)\) is bounded in \(L^r(0,1)\) for every \(r\) with \(1<r<p\).
The proof follows standard arguments used for \(\zeta(s)\) and sums involving the Möbius function. Several other related questions are discussed.

MSC:
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
11A25 Arithmetic functions; related numbers; inversion formulas
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Báez-Duarte, L., On Beurling’s real variable reformulation of the Riemann hypothesis, Adv. maths., 101, 10-30, (1993) · Zbl 0795.11035
[2] Bercovici, H.; Foias, C., A real variable restatement of Riemann’s hypothesis, Israel J. maths., 48, 57-68, (1984) · Zbl 0569.46011
[3] Beurling, A., A closure problem related to the Riemann zeta-function, Proc. nat. acad. sci., 41, 312-314, (1955) · Zbl 0065.30303
[4] A. Blanchard, Initiation à la théorie analytique des nombres premiers, Dunod, 1969 · Zbl 0198.37602
[5] Donoghue, W.F., Distributions and Fourier transforms, Pure appl. math., 32, (1969), Academic Press San Diego · Zbl 0188.18102
[6] Helson, H., Convergence of Dirichlet series, L’analyse harmonique dans le domaine complexe, (1973), Springer Lecture Notes, p. 153-160
[7] Levinson, N., Gap and density theorems, A.M.S. coll. publ. XXVI, (1940) · JFM 66.0332.01
[8] Nikolski, N., Distance formulae and invariant subspaces, with an application to localization of zeroes of the Riemannζ, Ann. inst. Fourier, 45, 143-159, (1995) · Zbl 0816.30026
[9] Nyman, B., On some groups and semigroups of translations, Thèse, Uppsala, (1950)
[10] Paley, R.E.A.C.; Wiener, N., The Fourier transform in the complex domain, A.M.S. coll. publ. XIX, (1934) · Zbl 0006.25704
[11] Schwartz, L., Etude des sommes d’exponentielles, (1959), Hermann Paris
[12] Szász, O., Über die approximation stetiger funktionen durch lineare aggregate von potenzen, Math. ann., 77, 482-496, (1916) · JFM 46.0419.03
[13] Tenenbaum, G., Introduction à la théorie analytique et probabiliste des nombres, Cours spécialisé S.M.F., 1, (1996) · Zbl 0788.11001
[14] Titchmarsh, E.C., The theory of the Riemann zeta-function (revised by D. R. heath-Brown), (1986), Clarendon Press Oxford · Zbl 0601.10026
[15] Vassiounine, V.I., Sur un système biorthogonal relié à l’hypothèse de Riemann (en russe), Algebra i annaliz, 7, 118-135, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.