Bertoin, Jean; Caballero, Maria-Emilia Regularity of the Cauchy principal value of the local times of some Lévy processes. (English) Zbl 0922.60073 Bull. Sci. Math. 123, No. 1, 47-58 (1999). Roughly speaking, the Cauchy principal value of the local times of a real-valued Lévy process \(X=(X_t, t\geq 0)\) is given by \(C_t=\text{p.v. } \int^t_0 {ds\over X_s}\), \(t\geq 0\), where the notation p.v. refers to principal value. The purpose of this paper is to investigate the regularity of the Cauchy principal value \(C\) of the local times of certain Lévy processes with no negative jumps. The authors define \(C\) under the weakest possible conditions and show that this process always has continuous sample paths. Moreover, the authors specify the real numbers \(p>1\) for which \(C\) has finite \(p\)-variation. Reviewer: Z.Rychlik (Lublin) Cited in 3 Documents MSC: 60J99 Markov processes 60J55 Local time and additive functionals 60G17 Sample path properties Keywords:Cauchy principal value of the local times; Lévy processes; \(p\)-variation PDF BibTeX XML Cite \textit{J. Bertoin} and \textit{M.-E. Caballero}, Bull. Sci. Math. 123, No. 1, 47--58 (1999; Zbl 0922.60073) Full Text: DOI OpenURL References: [1] Bertoin, J.: On the Hilbert transform of the local times of a Lévy process. Bull. sc. Math. 119-2, 147-156 (1995) [2] Bertoin, J.: Lévy processes. (1996) · Zbl 0861.60003 [3] Bertoin, J.: Cauchy’s principal value of local times of Lévy processes with no negative jumps via continuous branching processes. Electronic journal of probability 2 (1997) · Zbl 0890.60069 [4] Biane, Ph.; Yor, M.: Valeurs principales associées aux temps locaux browniens. Bull. sc. Math. 111, 23-101 (1987) · Zbl 0619.60072 [5] Bretagnolle, J.: P-variation de fonctions aléatoires, 2e partie: processus à accroissements indépendants. Lecture notes in math., 64-71 (1972) [6] Fitzsimmons, P. J.; Getoor, R. K.: On the distribution of the Hilbert transform of the local time of a symmetric Lévy process. Ann. probab. 20, 1484-1497 (1992) · Zbl 0767.60071 [7] Fitzsimmons, P. J.; Getoor, R. K.: Limit theorems and variation properties for fractional derivatives of the local time of a stable process. Ann. inst. Henri Poincaré 28, 311-333 (1992) · Zbl 0749.60072 [8] Itô, K.: Poisson point processes attached to Markov processes. Proc. 6th Berkeley symp. Math. stat. Prob., 225-239 (1970) [9] Yamada, T.: Principal values of Brownian local times and their related topics. Itô’s stochastic calculus and probability theory (1996) · Zbl 0878.60049 [10] Yor, M.: Exponential functionals and principal values related to Brownian motion. Biblioteca de la revista matematica ibero-americana (1997) · Zbl 0889.00015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.