×

zbMATH — the first resource for mathematics

Local and global estimates for the solutions of convection-diffusion problems. (English) Zbl 0924.35046
The author gives local and global estimates for the solutions of convection-diffusion problems, with Dirichlet-Neumann and Dirichlet boundary conditions, respectively. There are used the most recent methods for elliptic equations of Aleksandrov, Bakelman and Pucci, combined with standard traces estimates.

MSC:
35J65 Nonlinear boundary value problems for linear elliptic equations
35B45 A priori estimates in context of PDEs
35B50 Maximum principles in context of PDEs
47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aleksandrov, A.D., Majorization of solutions of second order linear equations, Vestnik leningrad univ., 21, 5-25, (1966)
[2] Bakel’man, I.Y., Theory of quasilinear elliptic equations, Siberian math. J., 2, 179-186, (1961)
[3] Gilbarg, D.; Trudinger, N.S., Elliptic partial differential equations of second order, (1983), Springer-Verlag Berlin-Heidelberg-New York · Zbl 0691.35001
[4] Bourgat, J.-F.; Le Tallec, P.; Tidriri, M.D., Coupling navier – stokes and Boltzmann, J. comput. phys., 127, 227-245, (1996) · Zbl 0860.76080
[5] P. Le Tallec, M. D. Tidriri, Convergence Analysis of Domain Decomposition Algorithms with Full Overlapping for the Advection-Diffusion Problems, 96-37, 1996, Math. Comp.
[6] P. Le Tallec, M. D. Tidriri, Application of maximum principles to the analysis of a coupling time marching algorithm · Zbl 0922.35029
[7] M. D. Tidriri, Couplage d’approximations et de modéles de types différents dans le calcul d’écoulements externes, Université de Paris IX, 1992
[8] M. D. Tidriri, Domain Decomposition for Incompatible Nonlinear Models, 2435, Dec. 1994
[9] Tidriri, M.D., Domain decompositions for compressible navier – stokes equations, J. comput. phys., 119, 271-282, (1995) · Zbl 0834.76071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.