×

zbMATH — the first resource for mathematics

Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. (English) Zbl 0924.46027
Authors’ summary: We study some problems on exponential integrability, concentration of measure, and transportation cost related to logarithmic Sobolev inequalities. On the real line, we then give a characterization of those probability measures which satisfy these inequalities.
Reviewer: H.Triebel (Jena)

MSC:
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDF BibTeX Cite
Full Text: DOI
References:
[1] Ahlswede, R.; Gács, P.; Körner, J.: Bounds on conditional probabilities with applications in multi-user communication. Z. wahrsch. Verw. gebiete 34, 157-177 (1976) · Zbl 0349.94038
[2] Aida, S.; Masuda, T.; Shigekawa, I.: Logarithmic Sobolev inequalities and exponential integrability. J. funct. Anal. 126, 83-101 (1994) · Zbl 0846.46020
[3] Aida, S.; Stroock, D.: Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. research letters 1, 75-86 (1994) · Zbl 0862.60064
[4] Bobkov, S. G.: On Gross and talagrand’s inequalities on the discrete cube. Vestnik syktyvkar univ. 1, 12-19 (1995) · Zbl 1011.60500
[5] Davies, E. B.; Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. funct. Anal. 59, 335-395 (1984) · Zbl 0568.47034
[6] Diaconis, P.; Saloff-Coste, L.: Logarithmic Sobolev inequalities for finite marlov chains. Ann. appl. Probab. 6, 695-750 (1996) · Zbl 0867.60043
[7] Dudley, R. M.: Real analysis and probability. (1989) · Zbl 0686.60001
[8] Gross, L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061-1083 (1975) · Zbl 0318.46049
[9] Gross, L.: Logarithmic Sobolev inequalities and contractivity properties of semigroups, varenna, 1992. Lecture notes in math. 1563, 54-88 (1993) · Zbl 0812.47037
[10] Harper, L. H.: Optimal numbering and isopermimetric problems on graphs. J. combin. Theory 1, 385-393 (1966) · Zbl 0158.20802
[11] Kantorovich, L. V. K.; Akilov, G. P.: Functional analysis. (1982) · Zbl 0484.46003
[12] M. Ledoux, Isoperimetry and Gaussian analysis, Ecole d ’été de Probabilités de Saint-Flour, 1994, Lecture Notes in Math. 1648, 1996, 165, 294
[13] Ledoux, M.: Remarks on logarithmic Sobolev constants, exponential integrability and bounds on the diameter. J. math. Kyoto univ. 35, 211-220 (1995) · Zbl 0836.60074
[14] Ledoux, M.: On talagrand’s deviation inequalities for product measures. ESAIM- probab. Statist. 1, 63-87 (1996) · Zbl 0869.60013
[15] Leindler, L.: On a certain converse of hölder’s inequality. Acta sci. Math. Szeged 33, 217-223 (1972) · Zbl 0245.26011
[16] Levin, V. L.: The problem of mass transfer in a topological space, and probability measures having given marginal measures on the product of two spaces. Soviet math. Dokl. 29, 638-643 (1984) · Zbl 0622.60004
[17] Marton, K.: A simple proof of the blowing-up lemma. IEEE trans. Inform. theory 32, 445-446 (1986) · Zbl 0594.94003
[18] Marton, K.: Boundingd. Ann. probab. 24, 857-866 (1996)
[19] Maurey, B.: Some deviation inequalities. Geom. funct. Anal. 1, 188-197 (1991) · Zbl 0756.60018
[20] Muckenhoupt, B.: Hardy’s inequality with weights. Studia math. 44, 31-38 (1972) · Zbl 0236.26015
[21] Milman, V. D.; Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. Lecture notes in math. 1200 (1986) · Zbl 0606.46013
[22] Pisier, G.: Probabilistic methods in the geometry of Banach spaces. Lecture notes in math. 1206 (1986) · Zbl 0606.60008
[23] Pisier, G.: The volume of convex bodies and Banach space geometry. Tracts in math. (1989) · Zbl 0698.46008
[24] Précopa, A.: On logarithmic concave measures and functions. Acta sci. Math. Szeged 34, 335-343 (1973)
[25] Rachev, S. T.: The Monge–Kantorovich mass transference problem and its stochastic applications. Theory probab. Appl. 24, 647-671 (1984) · Zbl 0581.60010
[26] Rothaus, O. S.: Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities. J. funct. Anal. 64, 296-313 (1985) · Zbl 0578.46028
[27] Talagrand, M.: An isoperimetric theorem on the cube and the khinchine–kahane inequalities. Proc. amer. Math. soc. 104, 905-909 (1988) · Zbl 0691.60015
[28] Talagrand, M.: A new isoperimetric inequality and the concentration of measure phenomenon. Lecture notes in math. 1469, 94-124 (1991) · Zbl 0818.46047
[29] Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publ. math. I.H.E.S. 81, 73-205 (1995) · Zbl 0864.60013
[30] Talagrand, M.: Transportation cost for Gaussian and other product measures. Geom. funct. Anal. 6, 587-600 (1996) · Zbl 0859.46030
[31] M. Talagrand, Private communication, 1996
[32] Tsirel’son, B. S.: A geometric approach to a maximum likelyhood estimation for infinite-dimensional Gaussian location, II. Theory probab. Appl. 30, 820-828 (1985) · Zbl 0604.62081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.