×

Dynamic linkages for multivariate distributions with given nonoverlapping multivariate marginals. (English) Zbl 0924.60004

This paper extends the notion of “linkage” introduced by the authors [ibid. 56, No. 1, 20-41 (1996; Zbl 0863.62049)] to the concept of “dynamic linkage” which can be used for the study of multivariate distributions with given multivariate marginal distributions.

MSC:

60E05 Probability distributions: general theory

Citations:

Zbl 0863.62049

Software:

Linkages
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aalen, O.O.; Hoem, J.M., Random time changes for multivariate counting processes, Scand. actuar. J., 81-101, (1978) · Zbl 0375.60066
[2] Barlow, R.E.; Proschan, F., Statistical theory of reliability and life testing: probability models, (1975), Holt, Rinehart and Winston · Zbl 0379.62080
[3] Block, H.W.; Fang, Z., Setwise independence for some dependence structures, J. multivar. anal., 32, 103-119, (1990) · Zbl 0684.62043
[4] Chhetry, D.; Kimeldorf, G.; Zahedi, H., Dependence structures in which uncorrelatedness implies independence, Statist. probab. lett., 4, 197-201, (1986) · Zbl 0605.62007
[5] Chhetry, D.; Sampson, A.R.; Kimeldorf, G., Concepts of setwise dependence, Probab. engrg. inform. sci., 3, 367-380, (1989) · Zbl 1134.60312
[6] Daduna, H.; Szekli, R., Dependencies in Markovian networks, Adv. appl. probab., 25, 226-254, (1995) · Zbl 0819.60083
[7] Deheuvels, P., Caractérisation complète des lois extrêmes multivariées et de la convergence des types extrêmes, Publ. inst. statist. univ. Paris, 23, 1-37, (1978) · Zbl 0414.60043
[8] Esary, J.D.; Proschan, F.; Walkup, D.W., Association of random variables, with applications, Ann. math. statist., 38, 1466-1474, (1967) · Zbl 0183.21502
[9] Jacobsen, M., Statistical analysis of counting processes, Lecture notes in statistics, 12, (1982), Springer-Verlag New York
[10] Joag-Dev, K.; Perlman, M.D.; Pitt, L., Association of normal random variables and Slepian’s inequality, Ann. probab., 11, 451-455, (1983) · Zbl 0509.62043
[11] Kimeldorf, G.; Sampson, A.R., Uniform representation of bivariate distributions, Comm. statist., 4, 617-627, (1975) · Zbl 0312.62008
[12] Kurtz, T.G., Representations of Markov processes as multiparameter time changes, Ann. probab., 8, 682-715, (1980) · Zbl 0442.60072
[13] Lehmann, E.L., Some concepts of dependence, Ann. math. statist., 37, 1137-1153, (1966) · Zbl 0146.40601
[14] Li, H.; Scarsini, M.; Shaked, M., Linkages: A tool for the construction of multivariate distributions with given nonoverlapping multivariate marginals, J. multivar. anal., 56, 20-41, (1996) · Zbl 0863.62049
[15] Marshall, A.W., Copulas, marginals, and joint distributions, Lecture notes—monograph series, 28, (1996)
[16] Norros, I., A compensator representation of multivariate lifelength distributions, with applications, Scand. J. statist., 13, 99-112, (1986) · Zbl 0627.62097
[17] Scarsini, M., Multivariate stochastic dominance with fixed dependence structure, Oper. res. lett., 7, 237-240, (1988) · Zbl 0655.90002
[18] Shaked, M., A concept of positive dependence for exchangeable random variables, Ann. statist., 5, 505-515, (1977) · Zbl 0363.62036
[19] Shaked, M.; Shanthikumar, J.G., The multivariate hazard construction, Stochastic process. appl., 24, 241-258, (1987) · Zbl 0622.60023
[20] Shaked, M.; Shanthikumar, J.G., Multivariate stochastic orderings and positive dependence in reliability theory, Math. oper. res., 15, 545-552, (1990) · Zbl 0714.60078
[21] Shaked, M.; Shanthikumar, J.G., Dynamic mulitvariate aging notions in reliability theory, Stochastic process. appl., 38, 85-97, (1991) · Zbl 0732.62094
[22] Shaked, M.; Shanthikumar, J.G., Stochastic orders and their applications, (1994), Academic Press New York · Zbl 0806.62009
[23] Sklar, A., Fonctions de répartition àn, Publ. inst. statist. univ. Paris, 8, 229-231, (1959) · Zbl 0100.14202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.