Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. (English) Zbl 0924.73145

Summary: This paper generalizes the classical mathematical homogenization theory for heterogeneous medium to account for eigenstrains. Starting from the double scale asymptotic expansion for the displacement and eigenstrain fields we derive a close form expression relating arbitrary eigenstrains to the mechanical fields in the phases. The overall structural response is computed using an averaging scheme by which phase concentration factors are computed in the average sense for each micro-constituent, and history data is updated at two points (reinforcement and matrix) in the microstructure, one for each phase. Macroscopic history data is stored in the database and then subjected in the post-processing stage onto the unit cell in the critical locations. For numerical examples considered, the CPU time obtained by means of the two-point averaging scheme with variational micro-history recovery with 30 seconds on SPARC 10/51 as opposed to 7 hours using classical mathematical homogenization theory. At the same time the maximum error in the microstress field in the critical unit cell was only 3.5% in comparison with the classical mathematical homogenization theory.


74E30 Composite and mixture properties
74E05 Inhomogeneity in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type
Full Text: DOI


[1] Aboudi, J., Continuum theory for fiber-reinforced elastic-viscoplastic composites, Int. J. Engrg. Sci., 20, 605-621 (1982) · Zbl 0493.73067
[2] Aboudi, J., Elastoplasticity theory for composite materials, Solid Mech. Archiv., 11, 27-38 (1986) · Zbl 0609.73065
[3] Accorsi, M. L.; Nemat-Nasser, S., Bounds on the overall elastic and instantaneous elasto-plastic moduli of periodic composites, Mech. Mater., 5, 209-220 (1986)
[4] Bakhvalov, N. S.; Panassenko, G. P., Homogenisation: Averaging Processes in Periodic Media (1989), Kluwer Academic Publishers
[5] Benssousan, A.; Lions, J. L.; Papanicoulau, G., Asymptotic Analysis for Periodic Structure (1978), North-Holland
[6] Chaboche, J. L., Time independent constitutive theories for cyclic plasticity, Int. J. Plast., 2, 149-188 (1986) · Zbl 0612.73038
[7] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0579.65058
[8] Dvorak, G. J., On uniform fields in heterogeneous media, (Proc. Roy. Soc. Lond., A431 (1990)), 89-110 · Zbl 0726.73002
[9] Dvorak, G. J., Plasticity theories for fibrous composite materials, (Everett, R. K.; Arsenault, R. J., Metal Matrix Composites: Mechanisms and Properties (1991), Academic Press) · Zbl 0633.73049
[10] Dvorak, G. J., Transformation field analysis of inelastic composite materials, (Proc. Roy. Soc. Lond., A437 (1992)), 331-437
[11] Dvorak, G. J.; Bahei-El-Din, Y. A., Plasticity analysis of fibrous composites, J. Appl. Mech., 49, 327-335 (1982) · Zbl 0485.73057
[12] Dvorak, G. J.; Bahei-El-Din, Y. A., Acta Mech., 69, 219-271 (1987)
[13] Dvorak, G. J.; Rao, M. S.M., Axisymmetric plasticity theory of fibrous composites, Int. J. Engrg. Sci., 14 (1976) · Zbl 0347.73011
[14] Fish, J.; Belsky, V., Multigrid method for periodic heterogeneous media: I. Convergence studies for one dimensional case, Comput. Methods Appl. Mech. Engrg., 126, 1-16 (1995) · Zbl 1067.74574
[15] Fish, J.; Belsky, V., Multigrid method for periodic heterogeneous media: II. Multiscale modeling and quality control in multidimensional case, Comput. Methods Appl. Mech. Engrg., 126, 17-38 (1995) · Zbl 1067.74573
[16] Fish, J.; Nayak, P.; Holmes, M. H., Microscale reduction error indicators and estimators for a periodic heterogeneous medium, Comput. Mech., 14, 323-338 (1994) · Zbl 0806.73003
[17] Fish, J.; Pandheeradi, M.; Belsky, V., An efficient multi-level solution scheme for large scale nonlinear systems, Int. J. Numer. Methods Engrg., 38, 1597-1610 (1995) · Zbl 0821.73067
[18] Fish, J.; Wagiman, A., Multiscale finite element method for a locally nonperiodic heterogeneous medium, Comput. Mech., 12, 164-180 (1993) · Zbl 0779.73058
[19] Guedes, J. M., Nonlinear Computational Models for Composite Materials Using Homogenization, (Ph.D. Thesis (1990), University of Michigan)
[20] Guedes, J. M.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Engrg., 83, 143-198 (1990) · Zbl 0737.73008
[21] Hill, R., A theory of the yielding and plastic flow of anisotropic metals, (Proc. Roy. Soc. Lond., A193 (1948)), 281-297 · Zbl 0032.08805
[22] Hill, R., The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Sol., 15, 79-95 (1967)
[23] Hughes, T. J.R., Numerical implementation of constitutive models: Rate-independent deviatoric plasticity, (Nemat-Nasser, S.; Asaro, R. J.; Hegemier, G. A., Theoretical Foundation for Large Scale Computations for Nonlinear Material Behavior (1983), Martinus Nijhoff Publishers)
[24] Levin, V. M., Thermal expansion coefficients of heterogeneous materials, Mekhanika Tverdogo Tela, 2, 88-91 (1967)
[25] Lin, T. H.; Salinas, D.; Ito, Y. M., Effects of hydrostatic stress on the yielding of cold rolled metals and fiber-reinforced composites, J. Comp. Mater., 26, 409-413 (1972)
[26] Oden, J. T.; Zohdi, T. I., Analysis and adaptive modeling of highly heterogeneous elastic structures, (Technical Report, 56 (1996), TICAM) · Zbl 0924.73015
[27] Phillips, A.; Moon, H., An experimental investigation concerning yield surfaces and loading surfaces, Acta Mech., 27, 91-102 (1977)
[28] Rizzi, S. A.; Leewood, A. R.; Doyle, J. F.; Sun, C. T., Elastic-plastic analysis of boron/aluminium composite under constrained plasticity conditions, J. Comput. Mater., 21, 734-749 (1987)
[29] Sanchez-Palencia, E.; Zaoui, A., Homogenization Techniques for Composite Media (1985), Springer-Verlag
[30] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate-independent elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 48, 101-118 (1985) · Zbl 0535.73025
[31] Suquet, P. M., Plasticité et Homogeneisation, (Ph.D. Thesis (1982), Université Pierre: Université Pierre Marie Curie, Paris 6)
[32] Suquet, P. M., Elements of homogenization for inelastic solid mechanics, (Sanchez-Palencia, E.; Zaoui, A., Homogenization Techniques for Composite Media (1987), Springer-Verlag) · Zbl 0645.73012
[33] Teply, J. L.; Dvorak, G. J., Bounds on overall instantaneous properties of elastic-plastic composites, J. Mech. Phys. Solids, 36, 29-58 (1988) · Zbl 0632.73052
[34] Zielger, H., A modification of Prager’s hardening rule, Quart. Appl. Math., 17, 55-65 (1959) · Zbl 0086.18704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.