×

zbMATH — the first resource for mathematics

Phase space geometry of constrained systems. (English. Russian original) Zbl 0925.70156
Theor. Math. Phys. 105, No. 3, 1539-1545 (1995); translation from Teor. Mat. Fiz. 105, No. 3, 429-437 (1995).
Summary: Invariant descriptions of phase space and the action principle for finite-dimensional constrained systems are given.

MSC:
70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. A. M. Dirac,Can. J. Math.,2, 129 (1950). · Zbl 0036.14104 · doi:10.4153/CJM-1950-012-1
[2] L. D. Faddeev,Teor. Mat. Fiz.,1, 3–18 (1969).
[3] A. M. Vershik and L. D. Faddeev,Dokl. Akad. Nauk SSSR,202, 555–557 (1972).
[4] A. Hanson, T. Regge, and C. Teitelboim,Constrained Hamiltonian systems, Acad. Nat. dei Lincei, Roma (1976).
[5] K. Sundermeyer,Constrained dynamics (Lecture Notes in Physics), Vol. 169 (1982). · Zbl 0508.58002
[6] G. Marmo, N. Mukunda, and J. Samuel,Riv. Nuovo Cimento,6, 2 (1983).
[7] G. Marmo, E. J. Saletan, A. Simoni, and B. Vitale,Dynamic Systems, A Differential Geometric Approach to Symmetry and Reduction, Wiley, Chichester (1985). · Zbl 0592.58031
[8] C. Battle, J. Gomis, J. M. Pons, and N. Roman,J. Math Phys.,28, 1117 (1987).
[9] V. P. Pavlov,Teor. Mat. Fiz.,92, 451–456 (1992).
[10] V. P. Pavlov,Teor. Mat. Fiz.,104, 304–309 (1995).
[11] V. I. Arnold,Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).
[12] B. A. Dubrovin, M. Giordano, G. Marmo, and A. Simoni,Int. J. Mod. Phys. A,8, 3747–3772 (1993). · Zbl 0984.37500 · doi:10.1142/S0217751X93001521
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.