×

zbMATH — the first resource for mathematics

Fractal analysis of surface roughness by using spatial data. (With discussion). (English) Zbl 0927.62118
Summary: We develop fractal methodology for data taking the form of surfaces. An advantage of fractal analysis is that it partitions roughness characteristics of a surface into a scale-free component (fractal dimension) and properties that depend purely on scale. Particular emphasis is given to anisotropy where we show that, for many surfaces, the fractal dimension of line transects across a surface must either be constant in every direction or be constant in each direction except one. This virtual direction invariance of fractal dimension provides another canonical feature of fractal analysis, complementing its scale invariance properties and enhancing its attractiveness as a method for summarizing properties of roughness. The dependence of roughness on direction may be explained in terms of scale rather than dimension and can vary with orientation. Scale may be described by a smooth periodic function and may be estimated nonparametrically.
Our results and techniques are applied to analyse data on the surfaces of soil and plastic food wrapping. For the soil data, interest centres on the effect of surface roughness on retention of rain-water, and data are recorded as a series of digital images over time. Our analysis captures the way in which both the fractal dimension and the scale change with rainfall, or equivalently with time. The food wrapping data are on a much finer scale than the soil data and are particularly anisotropic. The analysis allows us to determine the manufacturing process which produces the smoothness wrapping, with least tendency for micro-organisms to adhere.

MSC:
62P99 Applications of statistics
62M30 Inference from spatial processes
62H11 Directional data; spatial statistics
PDF BibTeX XML Cite
Full Text: DOI