Strong convergence of approximating fixed points for nonexpansive nonself-mappings in Banach spaces. (English) Zbl 0928.47040

Summary: Let \(E\) be a reflexive Banach space with a uniformly Gâteaux differentiable norm, \(C\) a nonempty closed convex subset of \(E\), and \(T: C\to E\) a nonexpansive mapping satisfying the inwardness condition. Assume that every weakly compact convex subset of \(E\) has the fixed point property. For \(u\in C\) and \(t\in (0,1)\), let \(x_t\) be a unique fixed point of a contraction \(G_t: C\to E\), defined by \(G_tx= tTx+(1- t)u\), \(x\in C\). It is proved that if \(\{x_t\}\) is bounded, then the strong \(\lim_{t\to 1}x_t\) exists and belongs to the fixed point set of \(T\). Furthermore, the strong convergence of other two schemes involving the sunny nonexpansive retraction is also given in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm.


47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
Full Text: DOI


[1] V. BARBU AND TH. PRECUPANU, Convexity and Optimization in Banach Spaces, Editura Academiei R. S. R., Bucharest, 1978. · Zbl 0379.49010
[2] F. E. BROWDER, Convergence of approximations to fixed points of nonexpansive mappings i Banach spaces, Arch. Rational Mech. Anal., 24 (1967), 82-90. · Zbl 0148.13601
[3] F. E. BROWDER, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc, 74 (1968), 660-665 · Zbl 0164.44801
[4] D. F CUDIA, The geometry of Banach spaces, smoothness, Trans. Amer. Math. Soc, 11 (1964), 284-314. · Zbl 0123.30701
[5] M. M. DAY, Normed Linear Spaces, 3rd ed., Springer-Verlag, Berlin-New York, 1973 · Zbl 0268.46013
[6] J. DIESTEL, Geometry of Banach Spaces, Lectures Notes in Math., 485, Spnger Verlag, Berlin-Heidelberg, 1975 · Zbl 0307.46009
[7] K. GOEBEL AND S. REICH, Uniform Convexity, Hyperbolic Geometry and Nonexpansiv Mappings, Marcel Dekker, New York-Basel, 1984. · Zbl 0537.46001
[8] K. S. HA AND J. S. JUNG, On generators and nonlinear semigroups in Banach spaces, J. Korean Math. Soc, 25 (1988), 245-25 · Zbl 0672.47052
[9] K. S. HA AND J. S. JUNG, Strong convergence theorems for accretive operators in Banac spaces, J. Math. Anal. Appl., 147 (1990), 330-339. · Zbl 0712.47045
[10] B. HALPERN, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc, 73 (1967), 957 961. · Zbl 0177.19101
[11] J. S. JUNG AND S. S. KIM, Strong convergence theorems for nonexpansive nonself-mappings i Banach spaces, to appear in Nonlinear Anal. · Zbl 0988.47033
[12] G. E. KIMAND W TAKAHASHI, Strong convergence theorems for nonexpansive nonself-map pmgs in Banach spaces, Nihonkai Math. J., 7 (1996), 63-72. · Zbl 0997.47512
[13] G. MARINO AND G. TROMBETTA, On approximating fixed points for nonexpansive maps, Indian J. Math., 34 (1992), 91-98. (1973), 227-290. · Zbl 0793.47052
[14] S. REICH, Fixed points of condensing functions, J. Math. Anal. Appl., 41 (1973), 460-46 · Zbl 0252.47062
[15] S. REICH, An iterative procedure for constructing zeros of accretive sets in Banac spaces, Nonlinear Anal., 2 (1978), 85-92. · Zbl 0375.47032
[16] S. REICH, Product formulas, nonlinear semigroups and accretive operators, J. Funct. Anal., 36 (1980), 147-168 · Zbl 0437.47048
[17] S. REICH, Strong convergence theorems for resolvents of accretive operators in Banac spaces, J. Math. Anal. Appl., 75 (1980), 287-292. · Zbl 0437.47047
[18] S. REICH, On the asymptotic behavior of nonlinear semigroups and the range of accretiv operators, J. Math. Anal. Appl., 79 (1981), 113-126. · Zbl 0457.47053
[19] S. REICH, Convergence, resolvent consistency, and the fixed point property for nonexpansiv mappings, Contemp. Math., 18 (1983), 167-174. · Zbl 0508.47056
[20] S. P SINGH AND B. WATSON, On approximating fixed points, Nonlinear Functional Analysi and its Applications, Proc. Sympos. Pure Math., 45, part 2, Amer. Math. Soc, Providence, 1988, 393-395. · Zbl 0597.47035
[21] W. TAKAHASHI AND G. E. KIM, Strong convergence of approximants to fixed points of non expansive nonself-mappings in Banach space, Nonlinear Anal., 32 (1998), 447-454. · Zbl 0947.47049
[22] W. TAKAHASHI AND Y UEDA, On Reich’s strong convergence theorems for resolvents o accretive operators, J. Math. Anal. Appl., 104 (1984), 546-553. · Zbl 0599.47084
[23] W. TAKAHASHI AND D. H. JEONG, Fixed point theorem for nonexpansive semigroups on Banac space, Proc. Amer. Math. Soc, 122 (1994), 1175-1179. · Zbl 0818.47055
[24] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127 1138. · Zbl 0757.46033
[25] H. K. Xu, Approximating curves of nonexpansive nonself mappings in Banach spaces, C. R. Acad. Sci. Pans Ser. I Math., 325 (1997), 179-184 · Zbl 0888.47036
[26] H. K. Xu AND X. M. YIN, Strong convergence theorems for nonexpansive nonself-mappings, Nonlinear Anal., 24 (1995), 223-228 · Zbl 0826.47038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.