Validation of linear regression models. (English) Zbl 0930.62041

Summary: A new test is proposed in order to verify that a regression function, say \(g\) has a prescribed (linear) parametric form. This procedure is based on the large sample behavior of an empirical \(L^2\)-distance between \(g\) and the subspace \(U\) spanned by the regression functions to be verified. The asymptotic distribution of the test statistic is shown to be normal with parameters depending only on the variance of the observations and the \(L^2\)-distance between the regression function \(g\) and the model space \(U\).
Based on this result, a test is proposed for the hypothesis that “\(g\) is not in a preassigned \(L^2\)-neighborhood of \(U\),” which allows the “verification” of the model \(U\) at a controlled type I error rate. The suggested procedure is very easy to apply because of its asymptotic normal law and the simple form of the test statistic. In particular, it does not require nonparametric estimators of the regression function and hence, the test does not depend on the subjective choice of smoothing parameters.


62G08 Nonparametric regression and quantile regression
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
62E20 Asymptotic distribution theory in statistics
Full Text: DOI


[1] Achieser, N. J. (1956). Theory of Approximation. Dover, New York. · Zbl 0072.28403
[2] Barry, D. and Hartigan, J. A. (1990). An omnibus test for departure from constant mean. Ann. Statist. 18 1340-1357. · Zbl 0706.62046
[3] Berger, J. O. and Delampady, M. (1987). Testing precise hy potheses. Statist. Sci. 2 317-352. · Zbl 0955.62545
[4] Bordeau, F. (1993). Tests for the choice of approximative models in nonlinear regression when the variance is unknown. Statistics 24 95-106. · Zbl 0808.62059
[5] Breiman, L. and Meisel, W. S. (1976). General estimates of the intrinsic variablity of data in nonlinear regression models. J. Amer. Statist. Assoc. 71 301-307. · Zbl 0336.62069
[6] Chow, S. C. and Liu, J. P. (1992). Design and Analy sis of Bioavailability and Bioequivalence Studies. Dekker, New York. · Zbl 0823.62086
[7] Cox, D., Koh, E., Wahba, G. and Yandell, B. S. (1988). Testing the (parametric) null model hy pothesis in (semiparametric) partial and generalized spline models. Ann. Statist. 16 113-119. · Zbl 0673.62017
[8] Davison, A. C. and Tsai, C. L. (1992). Regression model diagnostics. Internat. Statist. Rev. 60 337-353. · Zbl 0775.62201
[9] Delgado, M. A. (1993). Testing the equality of nonparametric regression curves. Statist. Probab. Lett. 17 199-204. · Zbl 0771.62034
[10] Dette, H. and Munk, A. (1997). A simple goodness-of-fit test for linear models under a random design assumption. Ann. Inst. Statist. Math. · Zbl 0903.62039
[11] Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression by quadratic forms-what is a reasonable choice? J. Roy. Statist. Soc. Ser. B. To appear. JSTOR: · Zbl 0944.62041
[12] Dieboldt, J. (1995). A nonparametric test for the regression function: asy mptotic theory. J. Statist. Plann. Inference 44 1-17. · Zbl 0812.62051
[13] Eubank, R. L. and Hart, J. D. (1992). Testing goodness of fit in regression via order selection criteria. Ann. Statist. 20 1412-1425. · Zbl 0776.62045
[14] Eubank, R. L. and Spiegelmann, C. H. (1990). Testing the goodness of fit of a linear model via regression techniques. J. Amer. Statist. Assoc. 85 387-392. JSTOR: · Zbl 0702.62037
[15] Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika 73 625-633. JSTOR: · Zbl 0649.62035
[16] Hall, P. and Hart, J. D. (1990). Bootstrap test for difference between means in nonparametric regression. J. Amer. Statist. Assoc. 85 1039-1049. JSTOR: · Zbl 0717.62037
[17] Hall, P. and Marron, J. S. (1990). On variance estimation in nonparametric regression. Biometrika 77 415-419. JSTOR: · Zbl 0711.62035
[18] Härdle, W. and Marron, J. S. (1990). Semiparametric comparison of regression curves. Ann. Statist. 18 83-89. · Zbl 0703.62053
[19] Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926-1947. · Zbl 0795.62036
[20] King, E. C., Hart, J. D. and Wehrly, T. E. (1991). Testing the equality of regression curves using linear smoothers. Statist. Probab. Lett. 12 239-247.
[21] MacKinnon, J. G. (1992). Model specification tests and artificial regressions. J. Economic Lit. 30 102-146.
[22] Mandallaz, D. and Mau, J. (1981). Comparison of different methods for decision-making in bioequivalence assessment. Biometrics 37 213-222. JSTOR: · Zbl 0468.62094
[23] Metzler, C. M. (1974). Bioavailiability: a problem in equivalence. Biometrics 30 309-317.
[24] M üller, H. G. (1992). Goodness of fit diagnostics for regression models. Scand. J. Statist. 19 157-172. · Zbl 0760.62037
[25] Neil, J. W. and Johnson, D. E. (1985). Testing linear regression function adequacy without replication. Ann. Statist. 13 1482-1489. · Zbl 0582.62056
[26] Orey, S. (1958). A central limit theorem for m-dependent random variables. Duke Math. J. 52 543-546. · Zbl 0107.13403
[27] Rice, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215-1230. · Zbl 0554.62035
[28] Sacks, J. and Ylvisaker, D. (1970). Designs for regression problems with correlated errors III. Ann. Math. Statist. 41 2057-2074. · Zbl 0234.62025
[29] Schuirmann, D. L. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacocinetics and Biopharmaceutics 15 657-680.
[30] Shillington, E. R. (1979). Testing lack of fit in regression without replication. Canad. J. Statist. 7 137-146. · Zbl 0445.62075
[31] Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. J. Roy. Statist. Soc. Ser. B 47 1-52. JSTOR: · Zbl 0606.62038
[32] Staudte, R. G. and Sheather, S. J. (1990). Robust Estimation and Testing. Wiley, New York. · Zbl 0706.62037
[33] Staniswalis, J. G. and Severini, T. A. (1991). Diagnostics for assessing regression models. J. Amer. Statist. Assoc. 86 684-692. JSTOR: · Zbl 0736.62063
[34] Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist. 25 613-641. · Zbl 0926.62035
[35] Whaba, G. (1978). Improper priors, spline smoothing, and the problem of guarding against model errors in regression. J. Roy. Statist. Soc. Ser. B 40 364-372. JSTOR: · Zbl 0407.62048
[36] Whittle, P. (1964). On the convergence to normality of quadratic forms in independent variables. Theory. Probab. Appl. 9 103-108. · Zbl 0146.40905
[37] Yanagimoto, T. and Yanagimoto, M. (1987). The use of marginal likelihood for a diagnostic test for the goodness of fit of the simple linear regression model. Technometrics 29 95-107. JSTOR: · Zbl 0608.62055
[38] Zielke, R. (1979). Discontinous Ceby sev-Sy stems. Lecture Notes in Math. 707. Springer, Berlin.
[39] Zwanzig, S. (1980). The choice of approximate models in nonlinear regression. Statistics 11 23-47. · Zbl 0446.62064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.