New icosahedral grid-point discretizations of the shallow water equations on the sphere. (English) Zbl 0930.76067

From the summary: We describe the implementation of numerical models of shallow water flow on the surface of the sphere, models which include the nondivergent barotropic limit as a special case. All of these models are specified in terms of a new grid-point-based methodology which employs an hierarchy of tessellations derivative of successive dyadic refinements of the spherical icosahedron. Using the new methodology, we have implemented two different formulations of each of the barotropic and shallow water dynamical systems. In one formulation, the vector velocity field is directly advanced in time; in the other, time integration is carried out entirely in terms of scalar quantities (i.e., absolute vorticity in the barotropic model and, in the more general shallow water model, height and velocity potential).


76M25 Other numerical methods (fluid mechanics) (MSC2010)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs


Full Text: DOI Link


[1] Stuhne, G. R.; Peltier, W. R., Vortex erosion and amalgamation in a new model of large scale flow on the sphere, J. Comput. Phys., 128, 58 (1996) · Zbl 0861.76045
[2] Hackbusch, W., Multi-Grid Methods and Applications, Springer Series in Computational Mathematics, 4 (1985) · Zbl 0585.65030
[3] Pedlosky, J., Geophysical Fluid Dynamics (1987) · Zbl 0713.76005
[4] Juckes, M. N.; McIntyre, M. E., A. high resolution one-layer model of breaking planetary waves in the stratosphere, Nature, 328, 13 (1987)
[5] Orszag, S. A., Fourier series on spheres, Mon. Weather Rev., 102, 56 (1974)
[6] Driscoll, J. R.; Healy, D. M., Computing Fourier-transforms and convolutions on the 2-sphere, Adv. Appl. Math., 15, 202 (1994) · Zbl 0801.65141
[7] Hortal, M.; Simmons, A. J., Use of reduced Gaussian grids in spectral models, Mon. Weather Rev., 119, 1057 (1991)
[8] Williamson, D., Integration of the barotropic vorticity equation on a spherical geodesic grid, Tellus, 20, 642 (1968)
[9] Sadourny, R.; Arakawa, A.; Mintz, Y., Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid on the sphere, Mon. Weather Rev., 96, 351 (1968)
[10] Baumgardner, J. R.; Frederickson, P. O., Icosahedral discretization of the two-sphere, Siam J. Numer. Anal., 22, 1107 (1985) · Zbl 0601.65084
[11] Williamson, D. L.; Drake, J. B.; Hack, J. J.; Jakob, R.; Swarztrauber, P. N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102, 211 (1992) · Zbl 0756.76060
[12] Cullen, M. J.P, Integrations of the primitive equations on a sphere using the finite element method, Quart. J. R. Met. Soc., 100, 555 (1974) · Zbl 0279.65090
[13] Masuda, Y.; Ohnishi, H., An integration scheme of the primitive equation model with an icosahedral-hexagonal grid system and its application to the shallow water equations, Short- and Medium-Range Numerical Weather Prediction: Collection of Papers Presented at the WMO/IUGG NWP Symposium, Tokyo, August 4-8, 1986, 317 (1986)
[14] Heikes, R.; Randall, D. A., Numerical integration of the shallow water equations on a twisted icosahedral grid. Part I. Basic design and results of rates, Mon. Weather Rev., 123, 1862 (1995)
[15] Heikes, R.; Randall, D. A., Numerical integration of the shallow water equations on a twisted icosahedral grid. Part II. A detailed description of the grid and an analysis of numerical accuracy, Mon. Weather Rev., 123, 1881 (1995)
[16] Augenbaum, J. M.; Peskin, C. S., On the construction of the Voronoi mesh on a sphere, J. Comput. Phys., 14, 177 (1985) · Zbl 0628.65115
[17] Swarztrauber, P. N.; Williamson, D. L.; Drake, J. B., The Cartesian method for solving partial differential equations in spherical geometry, Dyn. Atmos. Oceans, 27, 679 (1997)
[18] Bourke, W., A multi-level spectral model. I. Formulation and hemispheric integrations, Mon. Weather Rev., 102, 687 (1974)
[19] Hoskins, B. J.; Simmons, A. J., A multi-layer spectral model and the semi-implicit method, Quart. J. R. Met. Soc., 101, 637 (1975)
[20] DeVerdière, A. C.; Schopp, R., Flows in a rotating spherical shell: the equatorial case, J. Fluid Mech., 276, 233 (1994) · Zbl 0862.76090
[21] Côté, J., A Lagrange multiplier approach for the metric terms of semi-Lagrangian models on the sphere, Quart. J. R. Met. Soc., 114, 1347 (1988)
[22] Ford, R., Gravity wave radiation from vortex trains in rotating shallow water, J. Fluid Mech., 281, 81 (1994) · Zbl 0823.76090
[23] Lighthill, M. J., On sound generated aeordynamically, I. General Theory, Proc. R. Soc. London A, 211, 564 (1952) · Zbl 0049.25905
[24] Kwizak, M.; Robert, A. J., A semi-implicit scheme for grid point atmospheric models of the primitive equations, Mon. Weather Rev., 99, 32 (1971)
[25] Robert, A. J.; Henderson, J.; Turnbull, C., An implicit time integration scheme for baroclinic models of the atmosphere, Mon. Weather Rev., 100, 329 (1972)
[26] Charney, J. G., The use of the primitive equations in numerical prediction, Tellus, 7, 22 (1955)
[27] Becker, E. B.; Carey, G. F.; Oden, J. T., Finite Elements: An Introduction, 1 (1981) · Zbl 0459.65070
[28] Karpik, S. R.; Peltier, W. R., Multigrid methods for the solution of Poisson’s equation in a thick spherical shell, SIAM J. Sci. Stat. Comput., 12, 681 (1991) · Zbl 0726.65131
[29] Lax, P. D.; Wendroff, B., Systems of conservation laws, Comm. Pure and Appl. Math., 13, 217 (1960) · Zbl 0152.44802
[30] Haltiner, G. J., Numerical Weather Prediction (1971)
[31] Browning, G. L.; Hack, J. J.; Swarztrauber, P. N., A comparison of three numerical methods for solving differential equations on the sphere, Mon. Weather Rev., 117, 1058 (1989)
[32] Asselin, R., Frequency filter for time integrators, Mon. Weather Rev., 100, 487 (1972)
[33] Jakob-Chien, R.; Hack, J. J.; Williamson, D. L., Spectral transform solutions to the shallow water test set, J. Comput. Phys., 119, 164 (1995) · Zbl 0878.76059
[34] Leith, C., Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos. Sci., 37, 958 (1980)
[36] Juckes, M. N., A shallow water model of the winter stratosphere, J. Atmos. Sci., 46, 2934 (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.