×

zbMATH — the first resource for mathematics

Numerical solutions of fuzzy differential and integral equations. (English) Zbl 0931.65076
The authors present numerical algorithms for solving various types of fuzzy differential and integral equations. To this end they use fuzzy Euler algorithms and trapezoidal-type integration rules. Sufficient conditions for the uniform convergence of the procedures are given.

MSC:
65L05 Numerical methods for initial value problems
65R20 Numerical methods for integral equations
26E50 Fuzzy real analysis
34A34 Nonlinear ordinary differential equations and systems, general theory
45B05 Fredholm integral equations
Software:
FUSIM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aubin, J.P., Fuzzy differential inclusions, Problems of control and information theory, 19, 55-57, (1990) · Zbl 0718.93039
[2] Aubin, J.P., A survey of viability theory, SIAM J. control optim., 28, 749-788, (1990) · Zbl 0714.49021
[3] Aumann, R.J., Integrals of set-valued functions, J. math. anal. appl., 12, 1-12, (1965) · Zbl 0163.06301
[4] Badard, R., Fixed point theorems for fuzzy numbers, Fuzzy sets and systems, 13, 291-302, (1984) · Zbl 0551.54005
[5] Badard, R., Comparison of topological and uniform structures for fuzzy number and the fixed point problem, Fuzzy sets and systems, 21, 211-220, (1987) · Zbl 0604.54009
[6] Baidosov, V.A., Fuzzy differential inclusions, Prikl. math. mekh., USSR, 54, 8-13, (1990) · Zbl 0739.93050
[7] Buckley, J.J., Fuzzy eigenvalues and input-output analysis, Fuzzy sets and systems, 34, 187-195, (1990) · Zbl 0687.90021
[8] Buckley, J.J., Solving fuzzy equations, Fuzzy sets and systems, 50, 1-14, (1992) · Zbl 0788.04005
[9] Butnariu, D., Fixed points for fuzzy mapping, Fuzzy sets and systems, 7, 191-207, (1982) · Zbl 0473.90087
[10] Butnariu, D., Measurability concepts for fuzzy mappings, Fuzzy sets and systems, 31, 77-82, (1989) · Zbl 0664.28011
[11] Byung Soo Moon, A tuning algorithm for the fuzzy logic controllers, EUFIT ’95 620-624.
[12] Chang, S.S.L.; Zadeh, L., On fuzzy mapping and control, IEEE trans. system man cybernet., 2, 30-34, (1972) · Zbl 0305.94001
[13] Colombo, G.; Krivan, V., Fuzzy differential inclusions and non-probabilistic likelihood, Dyn-systems appl., 1, 419-439, (1992) · Zbl 0769.34015
[14] Ding, Z.; Kandel, A., Existence and stability of fuzzy differential equations, J. fuzzy math., 5, 681-697, (1997) · Zbl 0884.34066
[15] Z. Ding, M. Ma, A. Kandel, On the observability of fuzzy dynamic control system (I), Fuzzy Sets and Systems, to appear. · Zbl 0976.93051
[16] Z. Ding, A. Kandel, On the observability of fuzzy dynamic control system (II), Fuzzy Sets and Systems, to appear. · Zbl 0984.93049
[17] Diamond, P., Fuzzy least squares, Inform. sci., 46, 141-157, (1988) · Zbl 0663.65150
[18] Diamond, P.; Kloeden, P.E., Characterization of compact sets of fuzzy sets, Fuzzy sets and systems, 29, 341-348, (1989) · Zbl 0661.54011
[19] Diamond, P.; Kloeden, P., Metric spaces of fuzzy sets, Fuzzy sets and systems, 35, 241-249, (1990) · Zbl 0704.54006
[20] Diamond, P.; Kloeden, P., Metric spaces and fuzzy sets, corrigendum, Fuzzy sets and systems, 45, 123, (1992) · Zbl 0747.54004
[21] Dieudonué, J., Elements Dánalyse, (), 136
[22] Dubois, D.; Prade, H., Operations on fuzzy numbers, J. systems sci., 9, 613-626, (1978) · Zbl 0383.94045
[23] Dubois, D.; Prade, H., Fuzzy sets and systems: theory and applications, (1980), Academic Press New York · Zbl 0444.94049
[24] Dubois, D.; Prade, H.; Dubois, D.; Prade, H.; Dubois, D.; Prade, H., Towards fuzzy differential calculus, Fuzzy sets and systems, Fuzzy sets and systems, Fuzzy sets and systems, 8, 225-233, (1982) · Zbl 0537.93003
[25] Dubois, D.; Prade, H., Fuzzy number: an overview, (), 3-39
[26] Ferraro, M.; Foster, D., Differentiation of fuzzy continuous mapping on fuzzy topological vector spaces, J. math. anal. appl., 121, 589-601, (1987) · Zbl 0624.46029
[27] Ferraro, M.; Foster, D., Fuzzy manifolds, Fuzzy sets and systems, 54, 99-103, (1993)
[28] Friedman, M.; Kandel, A., On the design of a fuzzy intelligent differential equation solver, (), 203-212
[29] Friedman, M.; Kandel, A., Fundamentals of computer numerical analysis, (), 307-351
[30] Friedman, M.; Ming, Ma; Kandel, A., Numerical methods for calculating the fuzzy integral, Fuzzy sets and systems, 83, 57-62, (1996) · Zbl 0878.28014
[31] Friedman, M.; Ming, Ma; Kandel, A., On the validity of Peano theorem for fuzzy differential equations, Fuzzy sets and systems, 86, 331-334, (1997) · Zbl 0920.34056
[32] Gerla, G., A preservation theorem for fuzzy number theory, Inform. sci., 45, 51-59, (1988) · Zbl 0659.94027
[33] Godunov, A.N., Peano’s theorem in Banach spaces, Funct. anal. appl., 9, 53-55, (1975) · Zbl 0314.34059
[34] Goetschel, R.; Voxman, W., A pseudometric for fuzzy sets and certain related results, J. math. anal. appl., 81, 507-523, (1981) · Zbl 0505.54008
[35] Goetschel, R.; Voxman, W., Topological properties of fuzzy numbers, Fuzzy sets and systems, 10, 87-99, (1983) · Zbl 0521.54001
[36] Goetschel, R.; Voxman, W., Eigen fuzzy number sets, Fuzzy sets and systems, 16, 75-85, (1985) · Zbl 0581.04007
[37] Goetschel, R.; Voxman, W., Elementary calculus, Fuzzy sets and systems, 18, 31-43, (1986) · Zbl 0626.26014
[38] Harman, B., Sum and product of the modified real fuzzy numbers, Kybemetika suppl., 28, 34-40, (1992) · Zbl 0875.26033
[39] Heshmaty, B.; Kandel, A., Fuzzy linear regression and its applications to forecasting in uncertain environments, Fuzzy sets and systems, 15, 159-191, (1985) · Zbl 0566.62099
[40] Hochstadt, H., Integral equations, (), 1-24
[41] Kaleva, O., Fuzzy differential equations, Fuzzy sets and systems, 24, 301-317, (1987) · Zbl 0646.34019
[42] Kaleva, O., The Cauchy problem for fuzzy differential equations, Fuzzy sets and systems, 35, 389-396, (1990) · Zbl 0696.34005
[43] Kaleva, O., The calculus of fuzzy valued functions, Appl. math. lett., 3, 55-59, (1990) · Zbl 0708.26015
[44] Kandel, A., Fuzzy statistics and forecast evaluation, IEEE trans. systems man cybernet., 8, 396-401, (1978) · Zbl 0396.94025
[45] Kandel, A.; Byatt, W.J., Fuzzy differential equations, (), 1213-1216
[46] Kandel, A.; Byatt, W.J., Fuzzy sets, fuzzy algebra and fuzzy statistics, (), 1619-1639
[47] Kandel, A.; Byatt, W.J., Fuzzy processes, Fuzzy sets and systems, 4, 117-152, (1980) · Zbl 0437.60002
[48] Kandel, A., Fuzzy dynamical systems and the nature of their solutions, (), 93-122
[49] Kandel, A., Fuzzy techniques in pattern recognition, (), 64-90
[50] Kandel, A., Fuzzy mathematical techniques with applications, (1986), Addison-Wesley New York
[51] K. Kirkiakidis, A. Tzez, Fuzzy logic adaptive sliding control design with an application to air-handling systems, EUFIT ’95, pp. 954-959.
[52] Klement, E.P.; Puri, M.L.; Ralescu, D.A., Limit theorems for fuzzy random variables, (), 171-182 · Zbl 0605.60038
[53] Kloeden, P., Remarks on Peano-like theorems for fuzzy differential equations, Fuzzy sets and systems, 44, 161-164, (1991) · Zbl 0742.34058
[54] Leland, R.P., Fuzzy differential systems and Malliavin calculus, Fuzzy sets and systems, 70, 59-73, (1995) · Zbl 0845.34029
[55] Ming, Ma, Some notes on the characterization of compact sets in (En, dp), Fuzzy sets and systems, 56, 297-301, (1993) · Zbl 0791.54011
[56] Ming, Ma; Ming, Ma, On embedding problem of fuzzy number spaces: parts 4, 5, Fuzzy sets and systems, Fuzzy sets and systems, 55, 185-193, (1993) · Zbl 0789.46069
[57] Ma Ming, M. Friedman, A. Kandel, Numerical solution of fuzzy differential equations, Fuzzy Sets and Systems, to appear. · Zbl 0931.65076
[58] Matloka, M., On fuzzy integrals, (), 167-170
[59] Mizumoto, M.; Tanaka, K., The four operations of arithmetic on fuzzy numbers, Systems-comput.-controls, 7, 5, 73-81, (1976)
[60] Mizumoto, M.; Tanaka, K., Some properties of fuzzy numbers, (), 156-164
[61] Nahmias, S., Fuzzy variables, Fuzzy sets and systems, 1, 97-111, (1978) · Zbl 0383.03038
[62] Nanda, S., On integration of fuzzy mappings, Fuzzy sets and systems, 32, 95-101, (1989) · Zbl 0671.28009
[63] Negoita, C.V.; Ralescu, D.A., Applications of fuzzy sets to systems analysis, (1975), Wiley New York · Zbl 0326.94002
[64] Nguyen, H.T., A note on the extension principle for fuzzy sets, J. math. anal. appl., 64, 369-380, (1978) · Zbl 0377.04004
[65] He, Ouyang, Topological properties of the space of regular fuzzy sets, J. math. anal. appl., 129, 346-361, (1988) · Zbl 0645.54009
[66] He, Ouyang; Yi, Wu, On fuzzy differential equations, Fuzzy sets and systems, 32, 321-325, (1989) · Zbl 0719.54007
[67] Palm, R.; Driankov, D., Fuzzy inputs, Fuzzy sets and systems, 70, 315-335, (1995)
[68] Park, J.Y.; Kwan, Y.C.; Jeong, J.V., Existence of solutions of fuzzy integral equations in Banach spaces, Fuzzy sets and systems, 72, 373-378, (1995) · Zbl 0844.45010
[69] Puri, M.L.; Ralescu, D., Differential for fuzzy function, J. math. anal. appl., 91, 552-558, (1983) · Zbl 0528.54009
[70] Puri, M.L.; Ralescu, D., The concept of normality for fuzzy random variables, Ann. probab., 13, 1373-1379, (1985) · Zbl 0583.60011
[71] Puri, M.L.; Ralescu, D., Fuzzy random variables, J. math. anal. appl., 114, 409-422, (1986) · Zbl 0592.60004
[72] Radstrom, H.A., An embedding theorem for spaces of convex sets, (), 165-169 · Zbl 0046.33304
[73] Ralescu, D., A survey of the representation of fuzzy concepts and its applications, (), 77
[74] Ralescu, D., Toward a general theory of fuzzy variables, J. math. anal. appl., 86, 176-193, (1982) · Zbl 0482.60004
[75] Seikkala, S., On the fuzzy initial value problem, Fuzzy sets and systems, 24, 319-330, (1987) · Zbl 0643.34005
[76] Sugeno, M., Theory of fuzzy integrals and its application, ()
[77] Stojakovic, M., Fuzzy random variables, expectations and martingales, J. math. anal. appl., 184, 594-606, (1994) · Zbl 0808.60005
[78] Tanaka, H., Linear regression analysis with fuzzy model, IEEE trans. systems man cybernet, SMC-14, 325-328, (1984) · Zbl 0551.90061
[79] Vrba, J., A note on inverses in arithmetic with fuzzy numbers, Fuzzy sets and systems, 50, 267-278, (1992)
[80] Congxin, Wu; Ming, Ma, An embedding operator of fuzzy numbers and its application for fuzzy integrals, System sci. math. sci., 8, 193-199, (1990) · Zbl 0734.28020
[81] Congxin, Wu; Ming, Ma, On the integrals, series and integral equations of fuzzy set-valued functions, J. Harbin inst. technol., 21, 11-19, (1990) · Zbl 0970.26519
[82] Congxin, Wu; Ming, Ma; Congxin, Wu; Ming, Ma; Congxin, Wu; Ming, Ma, On embedding problem of fuzzy number spaces, Fuzzy sets and systems, Fuzzy sets and systems, Fuzzy sets and systems, 46, 281-286, (1992) · Zbl 0774.54003
[83] Menda, Wu, Linear fuzzy differential equation systems on R1, J. fuzzy systems math., 2, 1:51-56, (1988), (in Chinese)
[84] Xiaoping, Xue; Minghu, Ha; Ming, Ma, Random fuzzy number integrals in Banach spaces, Fuzzy sets and systems, 66, 97-111, (1994) · Zbl 0845.46048
[85] Yager, R.R., Fuzzy prediction based upon regression models, Inform. sci., 26, 45-63, (1982) · Zbl 0509.62087
[86] Zadeh, L.A., Fuzzy sets, Inform. control, 8, 338-353, (1965) · Zbl 0139.24606
[87] Zadeh, L.A.; Zadeh, L.A.; Zadeh, L.A., The concept of a linguistic variable and its application to approximate reasoning, Inform. sci., Inform. sci., Inform. sci., 9, 43-80, (1975) · Zbl 0404.68075
[88] Zadeh, L.A., Linguistic variables, approximate reasoning and disposition, Med. inform., 8, 173-186, (1983)
[89] Renhong, Zhao; Govind, R., Solutions of algebraic equations involving generalized fuzzy number, Inform. sci., 56, 199-243, (1991) · Zbl 0726.65048
[90] Zimmerman, H.J., Fuzzy programming and linear programming with several objective functions, Fuzzy sets and systems, 1, 45-55, (1978) · Zbl 0364.90065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.