Pouya, Ahmad; Zaoui, André Linearisation and homogenisation for viscoelastic materials. (Linéarisation et homogénéisation en viscoélasticité.) (French) Zbl 0931.74016 C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. Phys. Astron. 327, No. 4, 365-370 (1999). Summary: Constitutive equations for nonlinear viscoelastic materials are first expressed by using a causal operator which relates a response function to any loading history. Then the corresponding tangent linear equations are derived through the Fréchet derivative of this operator. Thus we propose a step-by-step treatment of the overall behaviour of nonlinear non-ageing viscoelastic heterogeneous materials. Cited in 2 Documents MSC: 74D10 Nonlinear constitutive equations for materials with memory 74Q05 Homogenization in equilibrium problems of solid mechanics 74A20 Theory of constitutive functions in solid mechanics Keywords:operator; response function; loading history; tangent linear equations; Fréchet derivative; nonlinear non-ageing viscoelastic heterogeneous materials PDF BibTeX XML Cite \textit{A. Pouya} and \textit{A. Zaoui}, C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. Phys. Astron. 327, No. 4, 365--370 (1999; Zbl 0931.74016) Full Text: DOI