Anane, A.; Chakrone, O. On a problem of lower limit in the study of nonresonance. (English) Zbl 0933.35067 Abstr. Appl. Anal. 2, No. 3-4, 227-237 (1997). Summary: We prove the solvability of the Dirichlet problem \[ \begin{cases} -\Delta_pu=f(u) +h\quad &\text{in }\Omega,\\ u=0\quad &\text{on }\partial \Omega \end{cases} \] for every given \(h\), under a condition involving only the asymptotic behaviour of the potential \(F\) of \(f\) with respect to the first eigenvalue of the \(p\)-Laplacian \(\Delta_p\). More general operators are also considered. MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs 35A25 Other special methods applied to PDEs Keywords:\(p\)-Laplacian; nonresonance; first eigenvalue PDF BibTeX XML Cite \textit{A. Anane} and \textit{O. Chakrone}, Abstr. Appl. Anal. 2, No. 3--4, 227--237 (1997; Zbl 0933.35067) Full Text: DOI EuDML Link OpenURL