×

Volatility misspecification, option pricing and superreplication via coupling. (English) Zbl 0933.91012

Summary: Consider the performance of an options writer who misspecifies the dynamics of the price process of the underlying asset by overestimating asset price volatility. When does he overprice the option? If he follows the hedging strategy suggested by his model, when does the terminal value of his strategy dominate the option payout?
We show that both these events happen if the option payoff is a convex function of the price of the underlying at maturity. The proofs involve the simple, powerful and intuitive techniques of coupling.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60G44 Martingales with continuous parameter
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ahn, H., Muni, A. and Swindle, G. (1996). Optimal hedging strategies for misspecified asset price models. · Zbl 1009.91035
[2] Avellaneda, M., Levy, A. and Parás, A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Applied Mathematical Finance 2 73-88.
[3] Bensoussan, A. (1984). On the theory of option pricing. Acta Appl. Math. 2 139-158. · Zbl 0554.90019
[4] Bergman, Y. Z., Grundy, B. D. and Wiener, Z. (1996). General properties of options prices. Working Paper 1-96, The Wharton School, Univ. Pennsy lvania.
[5] Dupire, B. (1993). Model art. Risk 6 118-124.
[6] Dupire, B. (1994). Pricing with a smile. Risk 7 18-20.
[7] El Karoui, N., Jeanblanc-Picqué, M. and Shreve, S. E. (1996). Robustness of the Black and Scholes formula. Math. Finance. · Zbl 0910.90008
[8] F öllmer, H. and Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In Applied Stochastic Analy sis (M. H. A. Davis and R. J. Elliott, eds.) 205-233. Gordon and Breach, London.
[9] Frey, R. (1996). The pricing and hedging of options in finitely elastic markets. Discussion Paper B-372, Rheinische Friedrich-Wilhelms, Univ. Bonn.
[10] Frey, R. and Sin, C. A. (1997). Bounds on European option prices under stochastic volatility. Research Report 1997-14, Statistical Laboratory, Univ. Cambridge. · Zbl 0980.91021
[11] Frey, R. and Stremme, A. (1997). Market volatility and feedback effects from dy namic hedging. Math. Finance. · Zbl 1020.91023
[12] Friedman, A. (1964). Partial Differential Equations of Parabolic Ty pe. Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0144.34903
[13] Hobson, D. G. (1996). Robust hedging of the lookback option. Finance and Stochastics. · Zbl 0907.90023
[14] Karatzas, I. (1988). On the pricing of American options. Appl. Math. Optim. 17 37-60. · Zbl 0699.90010
[15] Karatzas, I. (1989). Optimisation problems in the theory of continuous trading. SIAM J. Control Optim. 27 1221-1259. · Zbl 0701.90008
[16] Karatzas, I. and Shreve, S. E. (1987). Brownian Motion and Stochastic Calculus. Springer, New York. · Zbl 0615.60075
[17] Lindvall, T. (1992). Lectures on the Coupling Method. Wiley, New York. · Zbl 0850.60019
[18] Ly ons, T. J. (1995). Uncertain volatility and the risk-free sy nthesis of derivatives. Applied Mathematical Finance 2 117-133.
[19] Martini, C. (1995). Propagation de la convexité par des semi-groupes de Markov martingaliens sur la demi-droite positive. Prépublication 24, Equipe d’Analy se et Probabilités, Univ. Evry.
[20] My neni, R. (1992). The pricing of the American option. Ann. Appl. Probab. 2 1-23. · Zbl 0753.60040
[21] Protter, P. (1990). Stochastic Integration and Differential Equations. Springer, Berlin. · Zbl 0694.60047
[22] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Springer, Berlin. · Zbl 0731.60002
[23] Rogers, L. C. G. and Williams, D. (1987). Diffusions, Markov Processes and Martingales 2: It o Calculus. Wiley, Chichester. · Zbl 0977.60005
[24] Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In Time Series Models in Econometrics, Finance and Other Fields (D. R. Cox, D. V. Hinkley and O. E. Barndorff-Nielsen, eds.). Chapman and Hall, London. · Zbl 1075.91629
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.