×

zbMATH — the first resource for mathematics

An efficient shock-capturing algorithm for compressible multicomponent problems. (English) Zbl 0934.76062
Summary: A simple shock-capturing approach to multicomponent flow problems is developed for compressible Euler equations with a stiffened gas equation of state in multiple space dimensions. The algorithm uses a quasi-conservative formulation of the equations, that is derived to ensure the correct fluid mixing when approximating the equations numerically with interfaces. A \(\gamma\)-based model and a volume-fraction model are described, and both of them are solved using the standard high-resolution wave propagation method for general hyperbolic systems of partial differential equations. Several calculations are presented with a Roe approximate Riemann solver that show accurate results obtained using the method without any spurious oscillations of pressure near the interfaces. We show the convergence of computed solutions to the correct weak ones for a two-dimensional Richtmyer-Meshkov unstable interface problem, where we perform a mesh-refinement study and also show front-tracking results for comparison. \(\copyright\) Academic Press.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)
Software:
CLAWPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys., 125, 150, (1996) · Zbl 0847.76060
[2] Arora, M.; Roe, P. L., A well-behaved TVD limiter for high-resolution calculations of unsteady flow, J. Comput. Phys., 132, 3, (1997) · Zbl 0878.76045
[3] Bell, J. B.; Berger, M.; Saltzman, J.; Welcome, M., Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Comput., 15, 127, (1994) · Zbl 0793.65072
[4] J. B. Bell, P. Colella, M. L. Welcome, Conservative front-tracking for inviscid compressible flow, 1991
[5] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64, (1989) · Zbl 0665.76070
[6] Bourlioux, A.; Majda, A. J., Theoretical and numerical structure of unstable detonations, Philos. Trans. R. Soc. London A, 350, 29, (1995) · Zbl 0820.76091
[7] Chang, T.; Hsiao, L., The Riemann Problem and Interaction of Waves in Gas Dynamics, (1989) · Zbl 0698.76078
[8] Chang, Y. C.; Hou, T. Y.; Merriman, B.; Osher, S., A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449, (1996) · Zbl 0847.76048
[9] Chargy, D.; Abgrall, R.; Fezoui, L.; Larroutrrou, B., Comparisons of Several Upwind Schemes for Multi-component One-Dimensional Inviscid Flows, 1253, (1990)
[10] Clark, J. F.; Karni, S.; Quirk, J. J.; Roe, P. L.; Simmonds, L. G.; Toro, E. F., Numerical computation of two-dimensional unsteady detonation waves in high energy solids, J. Comput. Phys., 106, 215, (1993) · Zbl 0770.76040
[11] Cloutman, L. D.; Wehner, M. F., Numerical simulation of richtmyer – meshkov instabilities, Phys. Fluids A, 4, 1821, (1992)
[12] Cocchi, J. P.; Saurel, R.; Loraud, J. C., Treatment of interface problems with Godunov-type scheme, Shock Waves, 5, 347, (1996) · Zbl 0859.76044
[13] Colella, P., A direct Eulerian MUSCL scheme for gas dynamics, SIAM J. Sci. Stat. Comput., 6, 104, (1985) · Zbl 0562.76072
[14] P. Colella, R. E. Ferguson, H. M. Glaz, Multifluid algorithms for Eulerian finite difference methods
[15] Colella, P.; Glaz, H. M., Efficient solution algorithms for the Riemann problem for real gases, J. Comput. Phys., 59, 264, (1985) · Zbl 0581.76079
[16] Colella, P.; Majda, A.; Roytburd, V., Theoretical and numerical structure for reacting shock waves, SIAM J. Sci. Stat. Comput., 7, 1059, (1986) · Zbl 0633.76060
[17] Cooke, C. H.; Chen, T.-J., Continuous front tracking with subcell resolution, J. Sci. Comput., 6, 269, (1991)
[18] Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves, (1948) · Zbl 0041.11302
[19] Davis, S. F., An interface tracking method for hyperbolic systems of conservation laws, Appl. Numer. Math., 10, 447, (1992) · Zbl 0766.65067
[20] Einfeldt, B.; Munz, C. D.; Roe, P. L.; Sjogreen, B., On Godunov type methods near low densities, J. Comput. Phys., 92, 273, (1991) · Zbl 0709.76102
[21] Fedkiw, R. P.; Liu, X.-D.; Osher, S., A General Technique for Eliminating Spurious Oscillations in Conservative Schemes for Multiphase and Multispecies Euler Equations, (1997)
[22] Gardner, C. L.; Glimm, J.; McBryan, O.; Menikoff, R.; Sharp, D. H.; Zhang, Q., The dynamics of bubble growth for rayleigh – taylor unstable interfaces, Phys. Fluids, 31, 447, (1988) · Zbl 0641.76099
[23] Glaister, P., An approximate linearised Riemann solver for the Euler equations for real gases, J. Comput. Phys., 74, 382, (1988) · Zbl 0632.76079
[24] Glaister, P., An efficient algorithm for compressible flows with real gases, Int. J. Numer. Methods Fluids, 9, 1269, (1989) · Zbl 0684.76090
[25] J. Glimm, J. Grove, X. L. Li, K.-M. Shyue, Y. Zeng, Q. Zhang, Three dimensional front tracking, SIAM J. Sci. Comput.
[26] Godlewski, E.; Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, 118, (1996) · Zbl 1063.65080
[27] Grove, J.; Holmes, R.; Sharp, D. H.; Yang, Y.; Zhang, Q., Quantitative theory of richtmyer – meshkov instability, Phys. Rev. Lett., 7121, 3473, (1993)
[28] Grove, J.; Menikoff, R., The anomalous reflection of a shock wave at a material interface, J. Fluid Mech., 219, 313, (1990)
[29] Harlow, F.; Amsden, A. A., Fluid Dynamics, (1971)
[30] Hilditch, J.; Colella, P., A front tracking method for compressible flame in one dimension, SIAM J. Sci. Comput., 16, 755, (1995) · Zbl 0829.76063
[31] Holian, K. S., T-4 Handbook of Material Properties Data Bases, (1984)
[32] Holmes, R. L., A Numerical Investigation of the Richtmyer-Meshkov Instability Using Front Tracking, (1994)
[33] Jenny, P.; Mueller, B.; Thomann, H., Correction of conservative Euler solvers for gas mixtures, J. Comput. Phys., 132, 91, (1997) · Zbl 0879.76059
[34] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. Phys., 112, 31, (1994) · Zbl 0811.76044
[35] Karni, S., Hybrid multifluid algorithms, SIAM J. Sci. Comput., 17, 1019, (1996) · Zbl 0860.76056
[36] S. Karni, A level-set capturing scheme for compressible interfaces · Zbl 0952.76058
[37] J. O. Langseth, R. J. LeVeque, A wave propagation method for three-dimensional hyperbolic conservation laws · Zbl 0967.65095
[38] Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows, J. Comput. Phys., 95, 59, (1991) · Zbl 0725.76090
[39] Larrouturou, B.; Fezoui, L., On the equations of multi-component perfect or real gas inviscid flow, Nonlinear Hyperbolic Problems, 1402, (1989) · Zbl 0688.76072
[40] LeVeque, R. J., High resolution finite volume methods on arbitrary grids via wave propagation, J. Comput. Phys., 78, 36, (1988) · Zbl 0649.65050
[41] LeVeque, R. J., Hyperbolic conservation laws and numerical methods, Von Karman Institute for Fluid Dynamics, (1990) · Zbl 0682.76053
[42] LeVeque, R. J., Numerical Methods for Conservation Laws, (1992) · Zbl 0847.65053
[43] LeVeque, R. J., Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys., 131, 327, (1997) · Zbl 0872.76075
[44] LeVeque, R. J.; Shyue, K.-M., One-dimensional front tracking based on high resolution wave propagation methods, SIAM J. Sci. Comput., 16, 348, (1995) · Zbl 0824.65094
[45] LeVeque, R. J.; Shyue, K.-M., Two-dimensional front tracking based on high resolution wave propagation methods, J. Comput. Phys., 123, 354, (1996) · Zbl 0849.65063
[46] R. L. LeVeque, CLAWPACK, available from netlib.att.com in netlib/pdes/claw or on the Web at the URL,
[47] LeVeque, R. L., CLAWPACK: A software package for solving multi-dimensional conservation laws, Proc. 5th Intl. Conf. Hyperbolic Problems, 188-197, (1996) · Zbl 0918.35003
[48] Liou, M.-S.; van Leer, B.; Shuen, J.-S., Splitting of inviscid fluxes for real gases, J. Comput. Phys., 87, 1, (1990) · Zbl 0687.76074
[49] Marsh, S. P., LASL Shock Hugoniot Data, (1980)
[50] Menikoff, R.; Plohr, B., The Riemann problem for fluid flow of real materials, Rev. Mod. Phys., 61, 75, (1989) · Zbl 1129.35439
[51] Miller, G. H.; Puckett, E. G., A high order Godunov method for multiple condensed phases, J. Comput. Phys., 128, 134, (1996) · Zbl 0861.65117
[52] Mulder, W.; Osher, S.; Sethian, J. A., Computing interface motion in compressible gas dynamics, J. Comput. Phys., 100, 209, (1992) · Zbl 0758.76044
[53] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithm based on hamilton – jacobi formulations, J. Comput. Phys., 79, 12, (1988) · Zbl 0659.65132
[54] Plohr, B. J., Shockless acceleration of thin plates modeled by a tracked random choice method, AIAA J., 26, 470, (1988) · Zbl 0665.76094
[55] Puckett, E. G.; Saltzman, J. S., A 3D adaptive mesh refinement algorithm for multimaterial gas dynamics, Phys. D, 60, 84, (1992) · Zbl 0779.76059
[56] Quirk, J. J., A contribution to the great Riemann solver debate, Int. J. Numer. Methods Fluids, 18, 555, (1994) · Zbl 0794.76061
[57] Richtmyer, R. D., Taylor instability in shock acceleration of compressible fluids, Comm. Pure Appl. Math., 13, 297, (1960)
[58] Roe, P. L., Approximate Riemann solvers, parameter vector, and difference scheme, J. Comput. Phys., 43, 357, (1981) · Zbl 0474.65066
[59] P. L. Roe, Fluctuations and signals—A framework for numerical evolution problems, Numerical Methods for Fluid Dynamics, K. W. MortonM. J. Baines, Academic Press, San Diego, 1982, 219, 257
[60] P. L. Roe, Upwind schemes using various formulations of the Euler equations, Numerical Methods for the Euler Equations of Fluid Dynamics, F. AngrandA. DervieuxJ. A. DesideriR. Glowinski, SIAM, Philadelphia, 1985, 14, 31 · Zbl 0609.76075
[61] Samtaney, R., Vorticity in Shock-Accelerated Density-Stratified Interfaces: An Analytical and Computational Study, (1993)
[62] Saurel, R.; Larini, M.; Loraud, J. C., Exact and approximate Riemann solvers for real gases, J. Comput. Phys., 112, 126, (1994) · Zbl 0799.76058
[63] Sethian, J. A., Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Material Science, (1996) · Zbl 0859.76004
[64] Sharp, D. H., An overview of rayleigh – taylor instability, Phys. D, 12, 3, (1984) · Zbl 0577.76047
[65] Shyue, K.-M., Efficient High-Resolution Wave Propagation Methods for Computing Inviscid Compressible Flow with Interfaces, (1995)
[66] K.-M. Shyue, A front tracking method applied to compressible unstable interface problems
[67] K.-M. Shyue, Godunov-type shock capturing methods for multicomponent problems with van der Waals fluids
[68] Smoller, J., Shock Waves and Reaction-Diffusion Equations, (1982)
[69] Sussman, M.; Smereka, P.; Osher, S., A level set method for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146, (1994) · Zbl 0808.76077
[70] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995, (1984) · Zbl 0565.65048
[71] Ton, V., Improved shock-capturing methods for multicomponent and reacting flows, J. Comput. Phys., 128, 237, (1996) · Zbl 0860.76060
[72] van Leer, B., Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method, J. Comput. Phys., 32, 101, (1979) · Zbl 1364.65223
[73] Vetter, M.; Sturtveant, B., Experiments on richtmyer – meshkov instability of an air/SF_{6}, Shock Waves, 4, 247, (1995)
[74] Xu, K., BGK-based scheme for multicomponent flow calculations, J. Comput. Phys., 134, 122, (1997) · Zbl 0882.76060
[75] Yang, Y.; Zhang, Q.; Sharp, D. H., Small amplitude theory of richtmyer – meshkov instability, Phys. Fluids, 6, 1856, (1994) · Zbl 0831.76040
[76] Zhang, Q.; Sohn, S.-I., An analytical nonlinear theory of richtmyer – meshkov instability, Phys. Lett. A, 212, 149, (1996) · Zbl 1073.76551
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.