zbMATH — the first resource for mathematics

Are there hyperbolas in the scatter plots of inversive congruential pseudorandom numbers? (English) Zbl 0935.65002
Summary: Given a scatter plot of overlapping pairs \((x_n,x_{n+ 1})\) of pseudorandom numbers and the information that it stems from either a linear congruential or an inversive congruential generator with small modulus, it is usually no problem to guess the type of the generator: the points of a linear generator form a grid or lattice whereas inversive and explicit inversive congruential pseudorandom numbers exhibit hyperbola-like structures. We give an analytical description of this most eye-catching structural element of inversive congruential generators.

65C10 Random number generation in numerical analysis
11K45 Pseudo-random numbers; Monte Carlo methods
PDF BibTeX Cite
Full Text: DOI
[1] Chou, W.-S., On inversive maximal period polynomials over finite fields, Appl. algebra engrg. comm. comput., 6, 245-250, (1995) · Zbl 0832.11042
[2] Eichenauer, J.; Lehn, J., A non-linear congruential pseudo random number generator, Statist. papers, 27, 315-326, (1986) · Zbl 0607.65001
[3] Eichenauer-Herrmann, J., Inversive congruential pseudorandom numbers avoid the planes, Math. comp., 56, 297-301, (1991) · Zbl 0712.65006
[4] Eichenauer-Herrmann, J., Inversive congruential pseudorandom numbers: a tutorial, Int. statist. rev., 60, 167-176, (1992) · Zbl 0766.65002
[5] Eichenauer-Herrmann, J., Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. comp., 60, 375-384, (1993) · Zbl 0795.65002
[6] Eichenauer-Herrmann, J., Pseudorandom number generation by nonlinear methods, Int. statist. rev., 63, 247-255, (1995) · Zbl 0840.65005
[7] Eichenauer-Herrmann, J.; Herrmann, E.; Wegenkittl, S., A survey of quadratic and inversive congruential pseudorandom numbers, (), 66-97 · Zbl 0885.65003
[8] Flahive, M.; Niederreiter, H., On inversive congruential generators for pseudorandom numbers, (), 75-80 · Zbl 0790.11058
[9] Hellekalek, P., Inversive pseudorandom number generators: concepts, results, and links, (), 255-262
[10] P. Hellekalek, T. Auer, K. Entacher, H. Leeb, O. Lendl, S. Wegenkittl, The {\scpLab} www-server. http://random. mat.sbg.ac.at. Also accessible via ftp.
[11] Hellekalek, P.; Entacher, K.; Wegenkittl, S.; Weingartner, A., Extension of the tables of IMP-polynomials, ()
[12] Huber, K., On the period length of generalized inversive pseudorandom number generators, Appl. algebra engrg. comm. comput., 5, 255-260, (1994) · Zbl 0796.11030
[13] L’Ecuyer, P., Efficient and portable combined random number generators, Comm. ACM, 31, 6, 742-774, (1988)
[14] L’Ecuyer, P., Testing random number generators, (), 305-313
[15] L’Ecuyer, P.; Cordeau, J.F.; Simard, R., Close-points spatial tests for random number generators, (1997), submitted
[16] Leeb, H.; Wegenkittl, S., Inversive and linear congruential pseudorandom number generators in empirical tests, ACM trans. modeling comput. simulation, 7, 272-286, (1997) · Zbl 0885.68149
[17] Lendl, O., Design and implementation of a generic pseudorandom number generator library, (), Available on the internet at
[18] Niederreiter, H., On a new class of pseudorandom numbers for simulation methods, J. comput. appl. math., 56, 159-167, (1994) · Zbl 0823.65010
[19] Wegenkittl, S., Empirical testing of pseudorandom number generators, (), Available on the internet at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.