×

Exact solution of the Boltzmann equation in the homogeneous color conductivity problem. (English) Zbl 0935.82559

Summary: An exact solution of the Boltzmann equation for a binary mixture of “colored” Maxwell molecules is found. The solution corresponds to a nonequilibrium homogeneous steady state created by a nonconservative external force. Explicit expressions for the moments of the distribution function are obtained. By using information theory, an approximate velocity distribution function is constructed, which is exact in the limits of small and large field strengths. Comparison is made between the exact energy flux and the one obtained from the information theory distribution.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. G. Brush,Kinetic Theory, Vol. 2 (Pergamon Press, Oxford, 1966).
[2] A. V. Bobylev,Sov. Phys. Doklady 20:820, 822 (1976); M. Krook and T. T. Wu,Phys. Rev. Lett. 36:1107 (1976);38:991 (1977).
[3] M. H. Ernst,Phys. Rep. 78:1 (1981).
[4] A. A. Nikol’skii,Sov. Phys. Doklady 8:639 (1964).
[5] C. Truesdell and R. G. Muncaster,Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas (Academic Press, New York, 1980).
[6] E. S. Asmolov, N. K. Makashev, and V. I. Nosik,Sov. Phys. Doklady 24:892 (1979).
[7] E. M. Hendriks and M. H. Ernst,Physica A 120:545 (1983).
[8] W. G. Hoover,Annu. Rev. Phys. Chem. 34:103 (1983); D. J. Evans and G. P. Morris,Comp. Phys. Rep. 1:299 (1984).
[9] D. J. Evans,Phys. Lett. A 91:457 (1982); M. J. Gillan and M. Dixon,J. Phys. C 16:869 (1983).
[10] D. J. Evans, W. G. Hoover, B. Failor, B. Moran, and A. J. C. Ladd,Phys. Rev. A 28:1016 (1983).
[11] D. J. Evans, R. M. Lynden-Bell, and G. P. Morris,Mol. Phys. 67:209 (1989).
[12] H. A. Posch and W. G. Hoover,Phys. Rev. A 38:473 (1988).
[13] S. Chapman and T. G. Cowling,The Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1970). · Zbl 0049.26102
[14] L. H. Holway,Phys. Fluids 9:1658 (1966); E. Goldman and L. Sirovich,Phys. Fluids 10:1928 (1967).
[15] W. G. Hoover,J. Stat. Phys. 42:587 (1986).
[16] C. M. Bender, L. R. Mead, and N. Papanicolau,J. Math. Phys. 28:1016 (1987).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.