de la Bretèche, R. Proof of the Lieb-Thirring conjecture in the case of strictly convex quadratic potential. (Preuve de la conjecture de Lieb-Thirring dans le cas des potentiels quadratiques strictement convexes.) (French) Zbl 0938.35148 Ann. Inst. Henri Poincaré, Phys. Théor. 70, No. 4, 369-380 (1999). The author proves the Lieb-Thirring conjecture in the particular case of positive definite quadratic potentials. More precisely, if \(V(x)=\sum k_i^2x_i^2\) with \(k_i>0\), it is shown that for any convex function \(\varphi\) on \({\mathbb R}\) and \(E\in {\mathbb R}\) one has: \[ \sum_{m\in{\mathbb N}^n}\varphi (E-\sum_i (2m_i+1)k_i)\leq (2\pi)^{-n}\int \varphi (E-\xi^2 -V(x)) dx d\xi . \] The proof is based on a reduction to the one-dimensional case and elementary properties of convex functions. Reviewer: André Martinez (Bologna) Cited in 5 Documents MSC: 35Q40 PDEs in connection with quantum mechanics 35P20 Asymptotic distributions of eigenvalues in context of PDEs 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics Keywords:harmonic oscillator; Schrödinger operator; convex functions PDF BibTeX XML Cite \textit{R. de la Bretèche}, Ann. Inst. Henri Poincaré, Phys. Théor. 70, No. 4, 369--380 (1999; Zbl 0938.35148) Full Text: Numdam EuDML OpenURL References: [1] M. Aizenman et E. Lieb , On semi-classical bounds for eigenvalues of Schrödinger Operators , Phys. Lett. 66A , 1978 , 427 - 429 . MR 598768 [2] Ph Blanchard et J. Stubbe , Bound States for Schrödinger Hamiltonians : Phase space methods and applications , Rev. in Math. Physics , vol. 8 , n^\circ 4 , 1996 , 503 - 548 . MR 1405763 | Zbl 0859.35101 · Zbl 0859.35101 [3] B. Helffer et B. Parisse , Riesz means of bound states and semi classical limit connected with a Lieb-Thirring’s conjecture III , Prépublication de l’École Normale supérieure , 1990 . · Zbl 0717.35062 [4] B. Helffer et D. Robert , Calcul fonctionnel par la transformée de Mellin et applications , J. Funct. Anal. , 53 , 1983 , 246 - 268 . MR 724029 | Zbl 0524.35103 · Zbl 0524.35103 [5] B. Helffer et D. Robert , Riesz means of bound states and semi classical limit connected with a Lieb-Thirring’s conjecture I , Asymptotic Analysis , 3 , 91 - 103 , 1990 . MR 1061661 | Zbl 0717.35062 · Zbl 0717.35062 [6] B. Helffer et D. Robert , Riesz means of bound states and semi classical limit connected with a Lieb-Thirring’s conjecture II , Ann. Inst. Henri Poincaré, section Physique Théorique , 53 ( 2 ), 1990 , 139 - 147 . Numdam | MR 1079775 | Zbl 0728.35078 · Zbl 0728.35078 [7] A. Laptev , Dirichlet and Neumann eigenvalue problems on domains in euclidean spaces , J. Funct. Anal. , 151 , 1997 . MR 1491551 | Zbl 0892.35115 · Zbl 0892.35115 [8] A. Laptev , On the Lieb-Thirring conjecture for a class of potentials , preprint 1997 . MR 1747896 · Zbl 0938.35112 [9] E.H. Lieb et W.E. Thirring , Inequalities for the moments of the eigenvalues of the Schrödinger equation and their relation to Sobolev inequalities , Studies in Math. Phys. , (E. Lieb, B. Simon, A. Wightman Eds), Princeton Univ. Press , 1976 , 269 - 303 . Zbl 0342.35044 · Zbl 0342.35044 [10] H. Matsumoto et N. Ueki , Spectral Analysis of Schrödinger operators with Magnetic Fields , J. Funct. Anal. , 140 , n^\circ 1 , 218 - 255 . MR 1404582 | Zbl 0866.35083 · Zbl 0866.35083 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.