×

Numerical solution of problems on unbounded domains. A review. (English) Zbl 0939.76077

From the summary: While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABCs) at the newly formed external boundary. The issue of setting the ABCs appears most significant in many areas of scientific computing, for example, in problems originating from acoustics, electrodynamics, solid mechanics, and fluid dynamics. In particular, in computational fluid dynamics (where external problems represent a wide class of important formulations) the proper treatment of external boundaries may have a profound impact on the overall quality and performance of numerical algorithms and interpretation of the results.
In this paper we first present an extensive survey and provide a comparative assessment of different existing methods for constructing the ABCs. Then, we describe a new ABCs technique proposed in our recent work and review the corresponding results. This new technique enables one to construct the ABCs that largely combine the advantages relevant to the two aforementioned classes of existing methods.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
74S30 Other numerical methods in solid mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abarbanel, S.; Bayliss, A.; Lustman, L., Non-reflecting boundary conditions for the compressible Navier-Stokes equations, () · Zbl 0677.76068
[2] Abarbanel, S.; Gottlieb, D., A mathematical analysis of the PML method, J. comput. phys., 134, 357-363, (1997) · Zbl 0887.65122
[3] Abarbanel, S.; Gottlieb, D., On the construction and analysis of the absorbing layers in CEM, (), 876-883
[4] Abarbanel, S.; Gottlieb, D., On the construction and analysis of absorbing layers in CEM, Appl. numer. math., 27, 331-340, (1998), (this issue) · Zbl 0924.35160
[5] Agoshkov, V.I., Domain decomposition techniques for problems in mathematical physics, (), 3-51, (in Russian) · Zbl 0757.65122
[6] Anderson, D.; Tannehill, J.; Pletcher, R., Computational fluid mechanics and heat transfer, (1984), Hemisphere New York · Zbl 0569.76001
[7] Astley, R.J., Recent advances in applying wave-envelope elements to unbounded wave problems, (), to appear · Zbl 0924.76056
[8] Atkins, H.; Casper, J., Nonreflective boundary conditions for high-order methods, Aiaa j., 32, 512-518, (1994) · Zbl 0798.76074
[9] Bao, W.; Han, H., Nonlocal artificial boundary conditions for the incompressible viscous flow in a channel using spectral techniques, J. comput. phys., 126, 52-63, (1996) · Zbl 0853.76054
[10] Barry, A.; Bielak, J.; MacCamy, R.C., On absorbing boundary conditions for wave propagation, J. comput. phys., 79, 449-468, (1988) · Zbl 0665.65091
[11] Baum, M.; Poinsot, T.J.; Thévenin, D., Accurate boundary conditions for multicomponent reactive flows, J. comput. phys., 116, 247-261, (1994) · Zbl 0818.76047
[12] Bayliss, A.; Goldstein, C.I.; Turkel, E., The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics, Comput. math. appl., 11, 655-665, (1985) · Zbl 0596.76092
[13] Bayliss, A.; Gunzburger, M.; Turkel, E., Boundary conditions for numerical solution of elliptic equations in exterior domains, SIAM J. appl. math., 42, 430-451, (1982) · Zbl 0479.65056
[14] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Comm. pure appl. math., 33, 707-725, (1980) · Zbl 0438.35043
[15] Bayliss, A.; Turkel, E., Outflow boundary conditions for fluid dynamics, SIAM J. sci. statist. comput., 3, 250-259, (1982) · Zbl 0509.76035
[16] Bayliss, A.; Turkel, E., Far-field boundary conditions for compressible flows, J. comput. phys., 48, 182-199, (1982) · Zbl 0494.76072
[17] Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves, J. comput. phys., 114, 185-200, (1994) · Zbl 0814.65129
[18] Berenger, J.-P., Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. comput. phys., 127, 363-379, (1996) · Zbl 0862.65080
[19] Berger, H.; Warnecke, G.; Wendland, W.L., Analysis of a FEM/BEM coupling method for transonic flow computations, Math. comp., 66, 1407-1440, (1997) · Zbl 0898.76054
[20] Bettess, J.A.; Bettess, P., New mapped wave infinite element and diffraction of waves by elliptical cylinders of varying aspect ratio, (), to appear · Zbl 1073.76583
[21] Bielak, J.; Kallivokas, L.F.; MacCamy, R.C., Absorbing boundaries for acoustic wave propagation problems, (), to appear · Zbl 0955.76532
[22] Blaschak, J.G.; Kriegsmann, G.A., A comparative study of absorbing boundary conditions, J. comput. phys., 77, 109-139, (1988) · Zbl 0655.65134
[23] Bonnet, F.; Poupaud, F., Berenger absorbing boundary condition with time finite-volume scheme for triangular meshes, Appl. numer. math., 25, 333-354, (1997) · Zbl 0888.65132
[24] Brushlinskii, K.V.; Ryaben’kii, V.S.; Tuzova, N.B., The transfer of boundary conditions across a vacuum in axisymmetric problems, Comput. math. math. phys., 32, 1757-1767, (1992)
[25] Burkhart, R.H., Asymptotic expansion of the free-space Green’s function for the discrete 3-D Poisson equation, SIAM J. sci. comput., 18, 1142-1162, (1997) · Zbl 0888.35007
[26] Burkhart, R.H.; Bussoletti, J.; Johnson, F.T.; Samant, S.S.; Young, D.P., Solution of the discrete free-space 3-D Poisson equation, Boeing computer services technical report, BCSTECH-94-015, (April 1994)
[27] Burnett, D., An ellipsoidal infinite element for 3D radiation and scattering, ()
[28] Calderon, A.P., Boundary-value problems for elliptic equations, (), 303-304
[29] Clement, A., Coupling of two absorbing boundary conditions for 2D time-domain simulation of free surface gravity waves, J. comput. phys., 126, 139-151, (1996) · Zbl 0853.76057
[30] Cole, J.D.; Cook, L.P., Transonic aerodynamics, (1986), Elsevier Amsterdam · Zbl 0622.76067
[31] Collino, F., Perfectly matched absorbing layers for paraxial equations, J. comput. phys., 131, 164-180, (1996) · Zbl 0866.73013
[32] Colonius, T., Numerically nonreflecting boundary and interface conditions for compressible flow and aeroacoustic computations, Aiaa j., 35, 1126-1133, (1197) · Zbl 0909.76058
[33] Danowitz, J.S., A local far-field non-reflecting boundary condition for viscous two-dimensional external flows, ()
[34] Deakin, A.S.; Rasmussen, H., Sparse boundary conditions on artificial boundaries for three-dimensional potential problems, J. comput. phys., 129, 111-120, (1996) · Zbl 0870.65089
[35] Demkowicz, L.; Ihlenburg, F., Proof of convergence for the coupled finite/infinite elements methods for Helmholtz exterior boundary-value problems, (), to appear · Zbl 0952.65087
[36] De Moerloose, J.; De Zutter, D., Surface integral representation radiation boundary conditions for the FDTD method, IEEE trans. antennas propagation, 41, 890-895, (1993)
[37] Dgaygui, K.; Joly, P., Absorbing boundary conditions for linear gravity waves, SIAM J. appl. math., 54, 93-131, (1994) · Zbl 0799.35182
[38] Drela, M., Two-dimensional transonic aerodynamic design and analysis using the Euler equations, Massachusetts institute of technology, gas turbine laboratory report no. 187, (February 1986)
[39] Engquist, B.; Halpern, L., Far field boundary conditions for computation over long time, Appl. numer. math., 4, 21-45, (1988) · Zbl 0641.65088
[40] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. comp., 31, 629-651, (1977) · Zbl 0367.65051
[41] Engquist, B.; Majda, A., Radiation boundary conditions for acoustic and elastic wave calculations, Comm. pure appl. math., 32, 313-357, (1979) · Zbl 0387.76070
[42] Engquist, B.; Majda, A., Numerical radiation boundary conditions for unsteady transonic flow, J. comput. phys., 40, 91-103, (1981) · Zbl 0467.76056
[43] Engquist, B.; Zhao, H.-K., Absorbing boundary conditions for domain decomposition, (), to appear · Zbl 0952.65098
[44] Engquist, B.; Zhao, H.-K., Absorbing boundary conditions for domain decomposition, Appl. numer. math., 27, 341-365, (1998), (this issue) · Zbl 0935.65135
[45] Ferm, L., Open boundary conditions for stationary inviscid flow problems, J. comput. phys., 78, 94-113, (1988) · Zbl 0646.76014
[46] Ferm, L., Open boundary conditions for external flow problems, J. comput. phys., 91, 55-70, (1990) · Zbl 0711.76006
[47] Ferm, L., Non-reflecting accurate open boundary conditions for the steady Euler equations, () · Zbl 0839.76063
[48] Ferm, L., Modified external boundary conditions for the steady Euler equations, ()
[49] Ferm, L., Multigrid for external flow problems, ()
[50] Ferm, L., Non-reflecting boundary conditions for the steady Euler equations, J. comput. phys., 122, 307-316, (1995) · Zbl 0839.76063
[51] Ferm, L.; Gustafsson, B., A downstream boundary procedure for the Euler equations, Comput. & fluids, 10, 261-276, (1982) · Zbl 0495.76017
[52] Fix, G.J.; Marin, S.P., Variational methods for underwater acoustic problems, J. comput. phys., 28, 253-270, (1978) · Zbl 0384.76048
[53] Freund, J.B., Proposed inflow/outflow boundary conditions for direct computation of aerodynamic sound, Aiaa j., 35, 740-742, (1997) · Zbl 0903.76081
[54] Geers, T.L., Singly and doubly asymptotic computational boundaries, (), to appear · Zbl 1073.76621
[55] Gerdes, K., Infinite element methods, (), to appear · Zbl 0952.65088
[56] Giles, M.B., Nonreflecting boundary conditions for Euler equation calculations, Aiaa j., 28, 2050-2058, (1990)
[57] Giles, M.B.; Drela, M., Two-dimensional transonic aerodynamic design method, Aiaa j., 25, 1199-1206, (1987)
[58] Givoli, D., Non-reflecting boundary conditions, J. comput. phys., 94, 1-29, (1991) · Zbl 0731.65109
[59] Givoli, D., A spatially exact non-reflecting boundary condition for time dependent problems, Comput. methods appl. mech. engrg., 95, 97-113, (1992) · Zbl 0775.65006
[60] Givoli, D., Numerical methods for problems in infinite domains, (1992), Elsevier Amsterdam · Zbl 0788.76001
[61] Givoli, D.; Cohen, D., Nonreflecting boundary conditions based on Kirchhoff-type formulae, J. comput. phys., 117, 102-113, (1995) · Zbl 0861.65071
[62] Givoli, D.; Keller, J.B., A finite-element method for large domains, Comput. methods appl. mech. engrg., 76, 41-66, (1989) · Zbl 0687.73065
[63] Givoli, D.; Keller, J.B., Non-reflecting boundary conditions for elastic waves, Wave motion, 12, 261-279, (1990) · Zbl 0708.73012
[64] Givoli, D.; Keller, J.B., Special finite-elements for use with higher-order boundary conditions, Comput. methods appl. mech. engrg., 119, 199-213, (1994) · Zbl 0853.73066
[65] Givoli, D.; Patlashenko, I., Optimal local artificial boundary conditions, (), to appear · Zbl 0952.65089
[66] Givoli, D.; Patlashenko, I.; Keller, J.B., High-order boundary conditions and finite elements for infinite domains, Comput. methods appl. mech. engrg., 143, 13-39, (1997) · Zbl 0883.65085
[67] Givoli, D.; Vigdergauz, S., Artificial boundary conditions for 2D problems in geophysics, Comput. methods appl. mech. engrg., 110, 87-101, (1993) · Zbl 0846.73049
[68] Grinstein, F.F., Open boundary conditions in the simulation of subsonic turbulent shear flows, J. comput. phys., 115, 43-55, (1994) · Zbl 0820.76058
[69] Grote, M.J.; Keller, J.B., On nonreflecting boundary conditions, J. comput. phys., 122, 231-243, (1995) · Zbl 0841.65099
[70] Grote, M.J.; Keller, J.B., Exact nonreflecting boundary conditions for the time-dependent wave equation, SIAM J. appl. math., 55, 280-297, (1995) · Zbl 0817.35049
[71] Grote, M.J.; Keller, J.B., Nonreflecting boundary conditions for time-dependent scattering, J. comput. phys., 127, 52-65, (1996) · Zbl 0860.65080
[72] Grote, M.J.; Keller, J.B., Nonreflecting boundary conditions for Maxwell’s equations, J. comput. phys., 139, 327-342, (1998) · Zbl 0908.65118
[73] Guillaume, P.; Masmoud, M., Solution to the time-harmonic Maxwell’s equations in a waveguide; use of higher-order derivatives for solving the discrete problem, SIAM J. numer. anal., 34, 1306-1330, (1997) · Zbl 0885.49029
[74] Gustafsson, B., The choice of numerical boundary conditions for hyperbolic systems, J. comput. phys., 48, 270-283, (1982) · Zbl 0495.65045
[75] Gustafsson, B., Far-field boundary conditions for time-dependent hyperbolic systems, SIAM J. sci. statist. comput., 9, 812-828, (1988) · Zbl 0655.65107
[76] Gustafsson, B., Inhomogeneous conditions at open boundaries for wave propagation problems, Appl. numer. math., 4, 3-19, (1988) · Zbl 0642.65065
[77] Gustafsson, B.; Nordström, J., Extrapolation procedures at outflow boundaries for the Navier-Stokes equations, (), 136-151
[78] Gustafsson, B.; Sundström, A., Incompletely parabolic problems in fluid dynamics, SIAM J. appl. math., 35, 343-357, (1978) · Zbl 0389.76050
[79] Guo, D.-J.; Zeng, Q.-C., Open boundary conditions for a numerical shelf sea model, J. comput. phys., 116, 97-102, (1995) · Zbl 0833.76050
[80] Hadley, G.R., Transparent boundary condition for beam propagation, Opt. lett., 16, 624-626, (1991)
[81] Hagstrom, T.M., Asymptotic expansions and boundary conditions for time-dependent problems, SIAM J. numer. anal., 23, 948-958, (1986) · Zbl 0627.65119
[82] Hagstrom, T.M., Boundary conditions at outflow for a problem with transport and diffusion, J. comput. phys., 69, 69-80, (1987) · Zbl 0607.76089
[83] Hagstrom, T.M., Asymptotic boundary conditions for dissipative waves: general theory, Math. comp., 56, 589-606, (1991) · Zbl 0721.65056
[84] Hagstrom, T.M., On the convergence of local approximation to pseudodifferential operators with applications, ()
[85] Hagstrom, T.M., Exact and high-order boundary conditions in time domain, (), to appear · Zbl 0952.65080
[86] Hagstrom, T.M.; Hariharan, S.I., Accurate boundary conditions for exterior problems in gas dynamics, Math. comp., 51, 581-597, (1988) · Zbl 0699.76083
[87] Hagstrom, T.M.; Hariharan, S.I., Progressive wave expansions and open boundary problems, (), 23-43 · Zbl 0862.65057
[88] Hagstrom, T.M.; Keller, H.B., Exact boundary conditions at an artificial boundary for partial differential equations in cylinders, SIAM J. math. anal., 17, 322-341, (1986) · Zbl 0617.35052
[89] Hagstrom, T.M.; Keller, H.B., Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains, Math. comp., 48, 449-470, (1987) · Zbl 0627.65120
[90] Hagstrom, T.; Lorenz, J., Boundary conditions and the simulation of low Mach number flows, (), 657-668
[91] Halpern, L., Artificial boundary conditions for the linear advection-diffusion equation, Math. comp., 46, 425-438, (1986) · Zbl 0649.35041
[92] Halpern, L., Artificial boundary conditions for incompletely parabolic perturbations of hyperbolic systems, SIAM J. math. anal., 22, 1256-1283, (1991) · Zbl 0772.35003
[93] Han, H.; Lu, J.; Bao, W., A discrete artificial boundary condition for steady incompressible viscous flows in a no-slip channel using fast iterative method, J. comput. phys., 114, 201-208, (1994) · Zbl 0810.76052
[94] Harari, I., A variational formulation for partitioned exterior problems, (), to appear · Zbl 1073.76585
[95] Harari, I.; Hughes, T.J.R., Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. methods appl. mech. engrg., 97, 103-124, (1992) · Zbl 0769.76063
[96] Hariharan, S.I.; Hagstrom, T.M., A systematic approach for constructing asymptotic boundary conditions for wave-like equations, (), to appear · Zbl 1073.76623
[97] Harten, A.; Yad-Shalom, I., Fast multiresolution algorithms for matrix-vector multiplication, SIAM J. numer. anal., 31, 1191-1218, (1994) · Zbl 0807.65039
[98] Hayder, E.M.; Atkins, H.L., Experience with PML boundary conditions in fluid flow computations, (), to appear · Zbl 0955.76549
[99] Hayder, M.E.; Hagstrom, T., An outflow boundary condition for aeroacoustic computations, (), 41-46
[100] Hayder, M.E.; Hu, F.Q.; Hussaini, M.Y., Towards perfectly absorbing boundary conditions for Euler equations, (), 1150-1160, Part 2
[101] Hayder, M.E.; Turkel, E., High order accurate solutions of viscous problems, (), AIAA Paper No. 93-3074
[102] Hayder, M.E.; Turkel, E., Nonreflecting boundary conditions for jet flow computations, Aiaa j., 33, 2264-2270, (1995) · Zbl 0848.76045
[103] Hedstrom, G.W., Nonreflecting boundary conditions for nonlinear hyperbolic systems, J. comput. phys., 30, 222-237, (1979) · Zbl 0397.35043
[104] Hesthaven, J.H.; Gottlieb, D., A stable penalty method for the compressible Navier-Stokes equations: I. open boundary conditions, SIAM J. sci. comput., 17, 579-612, (1996) · Zbl 0853.76061
[105] Higdon, R.L., Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. comp., 47, 437-459, (1986) · Zbl 0609.35052
[106] Higdon, R.L., Absorbing boundary conditions for acoustic and elastic waves in stratified media, J. comput. phys., 101, 386-418, (1992) · Zbl 0800.76402
[107] Higdon, R.L., Radiation boundary conditions for dispersive waves, SIAM J. numer. anal., 31, 64-100, (1994) · Zbl 0798.65113
[108] Higdon, R.L., Absorbing boundary conditions for dispersive waves, (), to appear · Zbl 0955.65061
[109] Hodge, S.L.; Zorumski, W.E.; Watson, W.R., Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions, ()
[110] Hu, F.Q., On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer, J. comput. phys., 129, 201-219, (1996) · Zbl 0879.76084
[111] Israeli, M.; Orszag, S., Approximation of radiation boundary conditions, J. comput. phys., 41, 115-135, (1981) · Zbl 0469.65082
[112] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, (), AIAA Paper No. 81-1259
[113] Jiang, H.; Wong, Y.S., Absorbing boundary conditions for second-order hyperbolic equations, J. comput. phys., 88, 205-231, (1990) · Zbl 0701.65086
[114] Jin, G.; Braza, M., A nonreflecting outlet boundary condition for incompressible unsteady Navier-Stokes calculations, J. comput. phys., 107, 239-253, (1993) · Zbl 0777.76072
[115] Jin, J.M.; Chew, W.C., Combining PML and ABC for finite element analysis of scattering problems, Microwave opt. tech. lett., 12, 192-197, (1996)
[116] Johansson, C., Boundary conditions for open boundaries for the incompressible Navier-Stokes equation, J. comput. phys., 105, 233-251, (1993) · Zbl 0768.76014
[117] Johnsen, M.; Lynch, D.R., A second-order radiation boundary condition for the shallow water wave equations on two-dimensional unstructured finite element grids, Internat. J. numer. methods fluids, 18, 575-604, (1994) · Zbl 0794.76046
[118] Kallivokas, L.F.; Bielak, J., Time-domain analysis of transient structural acoustics problems based on the finite-element method and a novel absorbing boundary element, J. acoust. soc. amer., 94, 3480-3492, (1993)
[119] Kallivokas, L.F.; Bielak, J.; MacCamy, R.C., A simple impedance-infinite element for the finite element solution of the three-dimensional wave equation in unbounded domains, Comput. methods appl. mech. engrg., 147, 235-262, (1997) · Zbl 0901.76033
[120] Kallivokas, L.F.; Bielak, J.; MacCamy, R.C., Absorbing boundary conditions of arbitrary shape for the three-dimensional wave equation, (), to appear · Zbl 1073.76587
[121] Kallivokas, L.F.; Tsikas, A.; Bielak, J., On transient three-dimensional absorbing boundary conditions for the modeling of acoustic scattering from near-surface obstacles, J. comput. acoust., 5, 117-136, (1997)
[122] Kang, F., Finite element method and natural boundary reduction, (), 1439-1453
[123] Kantartzis, N.V.; Tsiboukis, T.D., A comparative study of the berenger PML, the superabsorption technique and several high-order ABCS for the FD-TD algorithm in two and three dimensional problems, IEEE trans. magnetics, 33, 1460-1463, (1997)
[124] Karni, S., Far-field filtering operators for suppression of reflections from artificial boundaries, SIAM J. numer. anal., 33, 1014-1047, (1996) · Zbl 0866.65060
[125] Keller, J.B.; Givoli, D., Exact non-reflecting boundary conditions, J. comput. phys., 82, 172-192, (1989) · Zbl 0671.65094
[126] Klunker, E.B., Contribution to methods for calculating the flow about thin lifting wings at transonic speeds—analytic expressions for the far field, ()
[127] Kosloff, R.; Kosloff, D., Absorbing boundaries for wave propagation problems, J. comput. phys., 63, 363-376, (1986) · Zbl 0644.65086
[128] Kreiss, H.-O.; Gustafsson, B., Boundary conditions for time-dependent problems with artificial boundary, J. comput. phys., 30, 333-351, (1979) · Zbl 0431.65062
[129] Kröner, D., Absorbing boundary conditions for the linearized Euler equations, Math. comp., 57, 153-167, (1991) · Zbl 0741.35035
[130] Lamb, H., Hydrodynamics, (1945), Dover New York · JFM 26.0868.02
[131] Landau, L.D.; Lifshitz, E.M., Fluid mechanics, (1986), Pergamon Press Oxford · Zbl 0146.22405
[132] Lončarić, J., Sensor/actuator placement via optimal distributed control of exterior Stokes flow, () · Zbl 1041.49503
[133] Luchini, P.; Tognaccini, R., Direction-adaptive nonreflecting boundary conditions, J. comput. phys., 128, 121-133, (1996) · Zbl 0863.65047
[134] Ludford, G.S.S., The behavior at infinity of the potential function of a two-dimensional subsonic compressible flow, J. math. phys., 30, 117-130, (1951) · Zbl 0043.40402
[135] MacCamy, R.C., Variational procedure for a class of exterior interface problems, J. math. anal. appl., 78, 248-266, (1980) · Zbl 0471.65081
[136] Mathews, I.C.; Newhouse, S., A comparison between time and frequency domain approaches for rigid body scattering problems, (), to appear · Zbl 1073.76616
[137] Matsushima, T.; Marcus, P.S., A spectral method for unbounded domains, J. comput. phys., 137, 321-345, (1997) · Zbl 0887.65103
[138] Mazaheri, K.; Roe, P., Numerical wave propagation and steady-state solutions: soft wall and outer boundary conditions, Aiaa j., 36, 965-975, (1997) · Zbl 0894.76044
[139] Mikhlin, S.G.; Morozov, N.F.; Paukshto, M.V., The integral equations of the theory of elasticity, (1995), Teubner Stuttgart · Zbl 0691.45003
[140] Mishkov, M.N.; Ryaben’kii, V.S., Artificial boundary conditions for the Helmholtz equation in a stratified medium, (1992), Keldysh Inst. Appl. Math., Russian Acad. Sci Moscow, (in Russian) · Zbl 1189.76369
[141] Mishkov, M.N.; Ryaben’kii, V.S., A study of one technique for constructing artificial boundary conditions, (1997), Keldysh Inst. Appl. Math., Russian Acad. Sci Moscow, (in Russian) · Zbl 1189.76369
[142] Mishkov, M.N.; Ryaben’kii, V.S., A study of one technique for constructing artificial boundary conditions, (1997), Keldysh Inst. Appl. Math., Russian Acad. Sci Moscow, (in Russian) · Zbl 1189.76369
[143] Mittra, R.; Ramahi, O.; Khebir, A.; Gordon, R.; Kouki, A., A review of absorbing boundary conditions for two and three-dimensional electromagnetic scattering problems, IEEE trans. magnetics, 25, 3034-3039, (1989)
[144] Monk, P.; Collino, F., Optimizing the perfectly matched layer, (), to appear · Zbl 0964.78018
[145] Mur, G., Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations, IEEE trans. electromagn. compatibility, 23, 377-382, (1981)
[146] Nataf, F., An open boundary condition for the computation of the incompressible Navier-Stokes equations, J. comput. phys., 85, 104-129, (1989) · Zbl 0679.76037
[147] Nedelec, J.-C., On the use of retarded potentials in different wave equations, ()
[148] ()
[149] Nordin, N.; Nordström, J., Improved far-field boundary conditions in EURANUS, (), Bromma, Sweden
[150] Nordström, J., The influence of open boundary conditions on the convergence to steady state for the Navier-Stokes equations, J. comput. phys., 85, 210-244, (1989) · Zbl 0679.76039
[151] Nordström, J., Accurate solutions of the timed-dependent Navier-Stokes equations despite erroneous outflow boundary data, ()
[152] Nordström, J., Accuracy and stability of extrapolation procedures at artificial outflow boundaries for the time-dependent Navier-Stokes equations, () · Zbl 0878.76052
[153] Nordström, J., Accurate solution of the Navier-Stokes equations despite unknown outflow boundary data, J. comput. phys., 120, 184-205, (1995) · Zbl 0842.76065
[154] Nordström, J., The use of characteristic boundary conditions for the Navier-Stokes equations, Comput. & fluids, 24, 609-623, (1995) · Zbl 0845.76075
[155] Oberai, A.A.; Malhorta, M.; Pinsky, P.M., Implementing highly accurate non-reflecting boundary conditions for large scale problems in structural acoustics, (), to appear · Zbl 1073.76590
[156] Patlashenko, I.; Givoli, D., Local non-reflecting finite-element schemes for acoustic wave guides, (), 337-343
[157] Patlashenko, I.; Givoli, D., Non-reflecting finite-element schemes for three-dimensional acoustic waves, J. comput. acoust., 5, 95-115, (1997) · Zbl 1360.76150
[158] Peterson, A.F., Absorbing boundary conditions for the vector wave equation, Microwave optical tech. lett., 1, 62-64, (1988)
[159] Petropoulos, P.G., Analysis of exponential time-differencing for FD-TD in lossy dielectrics, IEEE trans. antennas propagation, 45, 1054-1057, (1997)
[160] Petropoulos, P.G., On the termination of the perfectly matched layer with local absorbing boundary conditions, J. comput. phys., 143, 1-9, (1998)
[161] P.G. Petropoulos, Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell’s equations in rectangular, cylindrical and spherical coordinates, SIAM J. Appl. Math., submitted. · Zbl 1025.78016
[162] Petropoulos, P.G.; Kantartzis, N.V.; Tsiboukis, T.D., A comparison of the grote-Keller ABC and the unsplit PML for Maxwell’s equations in spherical coordinates, (), 623-630, Monterey, CA
[163] Petropoulos, P.G.; Zhao, L.; Cangellaris, A.C., A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell’s equations with high-order staggered finite difference schemes, J. comput. phys., 139, 184-208, (1998) · Zbl 0915.65123
[164] Pinsky, P.M.; Abboud, N.N., Finite element solution of the transient exterior structural acoustics problem based on the use of radially asymptotic operators, Comput. methods appl. mech. engrg., 85, 311-348, (1991) · Zbl 0764.73087
[165] Poezd, A.D.; Yakunin, S.A., Unsteady non-local in time boundary conditions for semi-opened cylindrical systems, Vestnik moskov. univ., ser. XV vychisl. mat. kibernet., 3, 16-21, (1988), (in Russian) · Zbl 0658.65121
[166] Poinsot, T.J.; Lele, S.K., Boundary conditions for direct simulations of compressible viscous flows, J. comput. phys., 101, 104-129, (1992) · Zbl 0766.76084
[167] Radvogin, Yu.B.; Zaitsev, N.A., Adequate boundary conditions for unsteady aeroacoustic problems, (), 179-190
[168] Reznik, A.A., Approximation of the surface potentials of elliptic operators by difference potentials and the solution of boundary value problems, (), (in Russian) · Zbl 0559.31006
[169] Rudy, D.; Strikwerda, J., A non-reflecting outflow boundary condition for subsonic Navier-Stokes calculations, J. comput. phys., 36, 55-70, (1980) · Zbl 0425.76045
[170] Rudy, D.; Strikwerda, J., Boundary conditions for subsonic compressible Navier-Stokes calculations, Comput. & fluids, 9, 327-338, (1981) · Zbl 0452.76042
[171] Ryaben’kii, V.S., Boundary equations with projections, Russian math. surveys, 40, 147-183, (1985) · Zbl 0594.35035
[172] Ryaben’kii, V.S., Difference pontentials method for some problems of continuous media mechanics, (1987), Nauka Moscow, (in Russian)
[173] Ryaben’kii, V.S., Exact transfer of difference boundary conditions, Functional anal. appl., 24, 3, 251-253, (1990) · Zbl 0712.39005
[174] Ryaben’kii, V.S., Exact transfer of boundary conditions, Comput. mech., 1, 129-145, (1990), (in Russian)
[175] Ryaben’kii, V.S., Difference potentials method and its applications, Math. nachr., 177, 251-264, (1996) · Zbl 0851.65091
[176] Ryaben’kii, V.S.; Sofronov, I.L., Difference spherical functions, (1983), Keldysh Inst. Appl. Math., U.S.S.R. Acad. Sci Moscow, (in Russian)
[177] Ryaben’kii, V.S.; Sofronov, I.L., Numerical solution of the three-dimensional external problems for Helmholtz’s equation by means of the difference potentials method, (), 187-201, (in Russian)
[178] Ryaben’kii, V.S.; Tsynkov, S.V., Artificial boundary conditions for the numerical solution of external viscous flow problems, SIAM J. numer. anal., 32, 1355-1389, (1995) · Zbl 0835.76078
[179] Ryaben’kii, V.S.; Tsynkov, S.V., An effective numerical technique for solving a special class of ordinary difference equations, Appl. numer. math., 18, 489-501, (1995) · Zbl 0838.65128
[180] Ryaben’kii, V.S.; Tsynkov, S.V., An application of the difference potentials method to solving external problems in CFD, () · Zbl 0838.65128
[181] also in: M. Hafez and K. Oshima, eds., CFD Review 1997, to appear
[182] Sa, J.-Y.; Chang, K.S., Far-field stream function condition for two-dimensional incompressible flows, J. comput. phys., 91, 398-412, (1990) · Zbl 0709.76128
[183] Safjan, A., Progress on highly accurate non-reflecting boundary conditions for finite-element formulations of transient acoustic problems, (), to appear · Zbl 1073.76591
[184] Schlichting, H., Boundary layer theory, (1968), McGraw-Hill New York
[185] Schmidt, F.; Deuflhard, P., Discrete transparent boundary conditions for Fresnel’s equation, (), 45-47, (IPR) · Zbl 0821.65078
[186] Scott, J.N.; Mankbadi, R.R.; Hayder, M.E.; Hariharan, S.I., Outflow boundary conditions for the computational analysis of jet noise, (), AIAA Paper No. 93-4366
[187] Seeley, R.T., Singular integrals and boundary value problems, Amer. J. math., 88, 781-809, (1966) · Zbl 0178.17601
[188] Seifert, A.; Daraby, A.; Nishri, B.; Wygnanski, I., The effects of forced oscillations on the performance of airfoils, (), AIAA Paper No. 93-3264
[189] Sofronov, I.L., Expansion of the difference potentials method and its application to solving the steady diffraction problems, (), (in Russian) · Zbl 0595.65060
[190] Sofronov, I.L., Difference potentials method for diffraction problems governed by the Maxwell equations, Comput. mech., 2, 158-177, (1990), (in Russian)
[191] Sofronov, I.L., A rapidly converging method for solving the Euler equation, Comput. math. math. phys., 31, 4, 66-78, (1991) · Zbl 0779.65085
[192] Sofronov, I.L., Artificial boundary conditions which are adequate to the wave equation outside the sphere, (1992), Keldysh Inst. Appl. Math., Russian Acad. Sci Moscow, (in Russian) · Zbl 0799.35141
[193] Sofronov, I.L., Conditions of complete transparency on the sphere for the three-dimensional wave equation, Russian acad. sci. dokl. math., 46, 397-401, (1993) · Zbl 0799.35141
[194] Sofronov, I.L., Condition of absolute transparency on sphere for wave equation, (), 1387-1396, CIMNE, Barcelona, 1993 · Zbl 0870.65087
[195] Sofronov, I.L., Transparent boundary conditions for unsteady transonic flow problems in wind tunnel, (1995), Mathematical Institute A, Stuttgart University Stuttgart, Preprint No. 95-21
[196] Sofronov, I.L., Generation of 2D and 3D artificial boundary conditions transparent for waves outgoing to infinity, (1996), Mathematical Institute A, Stuttgart University Stuttgart, Preprint No. 96-09
[197] I.L. Sofronov, Artificial boundary conditions of absolute transparency for 3D and 3D external time-dependent scattering problems, European J. Appl. Math., to appear. · Zbl 0926.35070
[198] I.L. Sofronov, Non-reflecting inflow and outflow in wind tunnel for transonic time-accurate simulation, J. Math. Anal. Appl., to appear. · Zbl 0916.76063
[199] Sofronov, I.L.; Tsynkov, S.V., An implementation of the potential flow model in setting the external boundary conditions for the Euler equations, (1991), Keldysh Inst. Appl. Math., U.S.S.R. Acad. Sci Moscow, (in Russian)
[200] Strikwerda, J., Initial boundary value problems for incompletely parabolic systems, Comm. pure appl. math., 30, 797-822, (1977) · Zbl 0351.35051
[201] Swanson, R.C.; Turkel, E., A multistage time-stepping scheme for the Navier-Stokes equations, (), AIAA Paper No. 85-0035
[202] Swanson, R.C.; Turkel, E., Artificial dissipation and central difference schemes for the Euler and Navier-Stokes equations, (), AIAA Paper No. 87-1107-CP · Zbl 0612.76084
[203] Swanson, R.C.; Turkel, E., Multistage schemes with multigrid for the Euler and Navier-Stokes equations. components and analysis, () · Zbl 0612.76084
[204] Taflove, A., Computational electrodynamics: the finite-difference time-domain method, (1995), Artech House Boston · Zbl 0840.65126
[205] Tam, C.K.W.; Webb, J.C., Dispersion-relation-preserving finite difference schemes for computational acoustics, J. comput. phys., 107, 262-281, (1993) · Zbl 0790.76057
[206] Tam, C.K.W.; Webb, J.C., Radiation boundary condition and anisotropy correction for finite-difference solutions of the Helmholtz equation, J. comput. phys., 113, 122-133, (1994) · Zbl 0810.65094
[207] Tang, Y.; Grimshaw, R., Radiation boundary conditions in barotropic coastal Ocean numerical model, J. comput. phys., 123, 96-110, (1996) · Zbl 0839.76060
[208] Thomas, J.L.; Salas, M.D., Far-field boundary conditions for transonic lifting solutions to the Euler equations, (), AIAA Paper No. 85-0020
[209] Thompson, K.W., Time-dependent boundary conditions for hyperbolic systems, J. comput. phys., 68, 1-24, (1987) · Zbl 0619.76089
[210] Thompson, K.W., Time-dependent boundary conditions for hyperbolic systems, II, J. comput. phys., 89, 439-461, (1990) · Zbl 0701.76070
[211] Ting, L.; Miksis, M.J., Exact boundary conditions for scattering problems, J. acoust. soc. amer., 80, 1825-1827, (1986)
[212] Tourrette, L., Artificial boundary conditions for the linearized compressible Navier-Stokes equations, J. comput. phys., 137, 1-37, (1997) · Zbl 0896.76079
[213] Trefethen, L.N.; Halpern, L., Well-posedness of one-way wave equations and absorbing boundary conditions, Math. comp., 47, 421-435, (1986) · Zbl 0618.65077
[214] Tsynkov, S.V., Boundary conditions at the external boundary of the computational domain for subsonic problems in computational fluid dynamics, (1990), Keldysh Inst. Appl. Math., U.S.S.R. Acad. Sci Moscow, (in Russian)
[215] Tsynkov, S.V., An implementation of the potential flow model in setting the external boundary conditions for the Euler equations, (1991), Keldysh Inst. Appl. Math., U.S.S.R. Acad. Sci Moscow, (in Russian)
[216] Tsynkov, S.V., An application of nonlocal external conditions to viscous flow computations, J. comput. phys., 116, 212-225, (1995) · Zbl 0818.76072
[217] Tsynkov, S.V., Nonlocal artificial boundary conditions for computation of external viscous flows, (), 1065-1070
[218] Tsynkov, S.V., Nonlocal artificial boundary conditions based on the difference potentials method, (), 114-119, Lake Tahoe, NV
[219] Tsynkov, S.V., Artificial boundary conditions based on the difference potentials method, () · Zbl 0899.76296
[220] Tsynkov, S.V., Nonlocal artificial boundary conditions for computation of external viscous flows, (), 512-518
[221] Tsynkov, S.V., Artificial boundary conditions for infinite-domain problems, (), 119-138 · Zbl 0940.76081
[222] Tsynkov, S.V., Artificial boundary conditions for computation of oscillating external flows, SIAM J. sci. comput., 18, 1612-1656, (1997) · Zbl 0899.76296
[223] Tsynkov, S.V., External boundary conditions for three-dimensional problems of computational aerodynamics, () · Zbl 0948.65088
[224] also SIAM J. Sci. Comput., submitted.
[225] Tsynkov, S.V., On the combined implementation of global boundary conditions with central-difference multigrid flow solvers, (), to appear · Zbl 0955.76536
[226] Tsynkov, S.V.; Turkel, E.; Abarbanel, S., External flow computations using global boundary conditions, Aiaa j., 34, 700-706, (1996)
[227] Tsynkov, S.V.; Vatsa, V.N., An improved treatment of external boundary for three-dimensional flow computations, (), 1139-1149, also AIAA J., submitted
[228] Turkel, E.; Vatsa, V.N.; Radespiel, R., Preconditioning methods for low-speed flows, (), AIAA Paper No. 96-2460-CP
[229] Turkel, E.; Yefet, A., Absorbing PML boundary layers for wave-like equations, Appl. numer. math., 27, 533-557, (1998), (this issue) · Zbl 0933.35188
[230] Vanajakshi, T.C.; Thompson, K.W.; Black, D.C., Boundary value problems is magnetohydrodynamics (and fluid dynamics). I. radiation boundary condition, J. comput. phys., 84, 343-359, (1989) · Zbl 0850.76852
[231] Vatsa, V.N.; Sanetrik, M.D.; Parlette, E.B., Development of a flexible and efficient multigrid-based multiblock flow solver, (), AIAA Paper No. 93-0677
[232] Verhoff, A., First-order far-field computational boundary conditions for O-grid topologies, (), AIAA Paper No. 95-0563 · Zbl 0908.76081
[233] Verhoff, A., Global far-field computational boundary conditions for C-grid topologies, (), AIAA Paper No. 95-2184 · Zbl 0908.76081
[234] Verhoff, A., Far-field computational boundary conditions for three-dimensional external flow problems, (), AIAA Paper No. 95-0892
[235] Verhoff, A., Global far-field computational boundary conditions for C- and O-grid topologies, Aiaa j., 36, 148-156, (1998) · Zbl 0908.76081
[236] Verhoff, A.; Stookesberry, D., Second-order far-field computational boundary conditions for inviscid duct flow problems, Aiaa j., 30, 1268-1276, (1992) · Zbl 0756.76062
[237] Verhoff, A.; Stookesberry, D.; Agrawal, S., Far-field computational boundary conditions for two-dimensional external flow problems, Aiaa j., 30, 2585-2594, (1992) · Zbl 0762.76090
[238] Vladimirov, V.S., Equations of mathematical physics, (1971), Dekker New York · Zbl 0231.35002
[239] Watanabe, E.; Utsunomiya, T., A response analysis of very large floating structure under airplane landing by FEM and a sponge layer for unbounded domain, (), to appear · Zbl 0955.76533
[240] Watson, W.R.; Myers, M.K., Inflow-outflow boundary conditions for two-dimensional acoustic waves in channels with flow, Aiaa j., 29, 1383-1389, (1991)
[241] Watson, W.R.; Myers, M.K., Two-step method for evolving nonlinear acoustic systems to a steady state, Aiaa j., 30, 1724-1730, (1992) · Zbl 0825.76726
[242] Watson, W.R.; Zorumski, W.E.; Hodge, S.L., Evaluation of several nonreflecting computational boundary conditions for duct acoustics, J. comput. acoust., 3, 327-342, (1995)
[243] Watson, W.R.; Zorumski, W.E., Periodic time domain nonlocal nonreflecting boundary conditions for duct acoustics, ()
[244] Weizman, R.J.; Zinoviev, E.V., Sound energy flow caused by plates and shells vibrations, Akusticheskii J., 41, 567-575, (1995)
[245] Wubs, F.W.; Boerstoel, J.W.; Van der Wees, A.J., Grid size reduction in flow calculations on infinite domains by higher-order far-field asymptotics in numerical boundary conditions, J. engrg. math., 18, 157-177, (1984)
[246] Yee, K.S., Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media, IEEE trans. antennas propagation, 14, 302-307, (1966) · Zbl 1155.78304
[247] Zavadsky, V.Yu., Finite-difference methods for the wave problems in acoustics, (1982), Nauka Moscow, (in Russian) · Zbl 0264.65075
[248] Zeng, X.; Kallivokas, L.F.; Bielak, J., Stable localized symmetric integral equation method for acoustic scattering problems, J. acoust. soc. amer., 91, 2510-2518, (1992)
[249] Zhao, L.; Cangellaris, A.C., GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids, IEEE trans. microwave theory tech., 44, 2555-2563, (1996)
[250] Zorumski, W.E.; Watson, W.R.; Hodge, S.L., A non-local computational boundary condition for duct acoustics, ()
[251] Zorumski, W.E.; Watson, W.R.; Hodge, S.L., A non-local computational boundary condition for duct acoustics, J. comput. acoust., 3, 15-26, (1995)
[252] Zueva, N.M.; Mikhailova, M.S.; Ryaben’kii, V.S., Transfer of boundary conditions from infinity to an artificial boundary for the difference analogue of the Laplace equation, (1991), Keldysh Inst. Appl. Math., U.S.S.R. Acad. Sci Moscow, (in Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.