×

zbMATH — the first resource for mathematics

Airfoil design by an all-at-once method. (English) Zbl 0940.76084
Summary: The all-at-once approach is implemented to solve an optimum airfoil design problem. The airfoil design problem is formulated as a constrained optimization problem in which flow variables and design variables are viewed as independent, and the coupling steady state Euler equation is included as a constraint, along with geometry and other constraints. In this formulation, the optimizer computes a sequence for points which tend toward feasibility and optimality at the same time (all-at-once). In this paper an existing optimization algorithm is combined with an existing flow code. The problem formulation, its discretization, and the underlying solvers are described. Numerical results indicate that the cost of solving the design problem is approximately six times the cost of solving a single analysis problem.

MSC:
76N25 Flow control and optimization for compressible fluids and gas dynamics
76G25 General aerodynamics and subsonic flows
76M30 Variational methods applied to problems in fluid mechanics
Software:
TRICE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbott , I. H. on Docnhoff , A. E. ( 1959 ), Theory of Wing Sections . Dover Publications. Inc. , New York .
[2] Anderson , W. K. and Venkalakrishnan , V. ( 1997 ), Aerodynamic design optimization on unstructured grids with a continuous adjoint formulalion . Tech. Rep. 97-9. ICASE , NASA Langley Research Center . Hampton VA 23681-0001 .
[3] Balling , R. J. obieszezanski-Sobieski. J. ( 1994 ), Optimization of coupled sysicms A critical overview of approaches , Tech. Rep. 94-100, ICASE , NASA Langley Research Center , Hampton VA 23681-0001 .
[4] Betts , J. T. , Huffman. W. P. and Young , D. P. ( 1994 ). An investigation of algorithm performance in aerodynamic design optimization . Tech. Rep. BCSTECH-96-061 , Boeing Computer Services . P.O. Box 24346. M/S 7L-68 . Seattle . WA 98124-0346 .
[5] DOI: 10.1006/jcph.1997.5743 · Zbl 0903.76064 · doi:10.1006/jcph.1997.5743
[6] DOI: 10.1023/A:1022616327742 · Zbl 0891.49018 · doi:10.1023/A:1022616327742
[7] DOI: 10.1137/0804044 · Zbl 0818.65055 · doi:10.1137/0804044
[8] DOI: 10.2514/3.11983 · Zbl 0800.76323 · doi:10.2514/3.11983
[9] Dennis , J. E. , Heinkenschloss , M. and Vicente , L. N. ( 1994 ), Trust-region inlerior-poini algorithms for a class of nonlinear programming problems . Tech. Rep. TR94-45, Department of Computational and Applied Mathematics , Rice University . Houston , TX 77005-1892 .
[10] Eberie , A. , Rizzi , A. and Hirschcl , E. H. ( 1992 ). Numerical Solutions of the Euler Equations for Steady Flow Problems . Vol. 34 of Notes on Numerical Fluid Mechanics, Vieweg , Wiesbaden .
[11] DOI: 10.1016/0021-9991(92)90174-W · Zbl 0741.76067 · doi:10.1016/0021-9991(92)90174-W
[12] DOI: 10.1006/jcph.1997.5744 · Zbl 0893.76067 · doi:10.1006/jcph.1997.5744
[13] DOI: 10.1137/0806022 · Zbl 0861.49025 · doi:10.1137/0806022
[14] Hcinkenschloss , M. and Vicente , L. N. ( 1995 ). Analysis of inexact trust-region interior-point SQP algorithms . Tech. Rep. TR95-I8. Department of Computational and Applied Mathematics . Rice University . Houston , TX 77005-1892 .
[15] –. TRICE A package of trust-region interior-point algorithms for the solution of optimal control and engineering design problems. User’s guide , tech. rep. Department of Computational and Applied Mathematics , Rice University . Houston . TX 77005-1892. 1996. Available electronically from the URL http//www.caam.ricc.e-du/ lricc .
[16] Hirsch , C. ( 1991 ). Numerical Computation of Internal and External flows . Vol. 2 , Computational Methods for Inviscid and Viscous Flows . John Wiley & Sons . West Sussex . · Zbl 0742.76001
[17] – . Numerical Computation of Internal and External Flows , Vol. I , Fundamentals of Numerical Discretization . John Wiley & Sons , West Sussex . · Zbl 0662.76001
[18] Iollo , A. , Kuruvila , G. and Ta’asan , S. ( 1995 ). Pseudotime method for optimal shape design using the Euler equations , tech. Rep 95-59, ICASE , NASA Langley Research Center , Hampton VA 23681-0001 .
[19] Iollo , A. and Salas , M. D. ( 1996 ). Optimum transonic airfoils based on the Euler equations . Tech. Rep. 96-76, ICASE . NASA Langley Research Center . Hampton VA 23681-0001 .
[20] Iollo , A. Salas , M. D. and Ta’asan , S. ( 1993 ). Shape optimization governed by the Euler equations using an adjoint method , Tech. Rep. 93-78. ICASE . NASA Langley Research Center . Hampton VA 23681-0001 .
[21] Jameson A., Proceedings of the AIAA 22nd Fluid Dynamics Plasmadynamics and Laser Conjerence (1991)
[22] Proceedings of the AIAA I2lh Computational Fluid Dynamics Conference (1995)
[23] Jameson A., Proceedings of I he AIAA/USAF/NASA/ISSMO 5th Symposium on Mulli-disciplinurv Analysis and Optimization (1994)
[24] Kantorovich , L. kilov. G. ( 1964 ). Functional Analysis in Normcd Spaces , Pergamon Press , New York .
[25] Narducei , R. P. , Selected Optimization Procedures for CFD-Bascd Shape Design involving Shock Waves or Computational Noise , Ph.D. Thesis. Aerospace and Ocean Engineering Department . Virgina Tech . Blacksburg . Virginia . May 1995 .
[26] Newman , P. A. , Hon , G. J.W. aylor, A. C. III. ( 1996 ). Observations regarding use of advanced analysis. sensitivity analysis, and design codes in CFD . Tech. Rep. 96-16. ICASE . NASA Langley Research Center . Hampton VA 23681-0001 .
[27] Reuther J., Proceedings of the AIAA 34lh Aeorspace Sciences Meeting and Exhibit (1996)
[28] Shenoy A., Proceedings of the AIAA 31st Thermophvsics Conference (1996)
[29] Shenoy A. R., Aerospace and Ocean Engineering Department (1997)
[30] DOI: 10.2514/3.9394 · doi:10.2514/3.9394
[31] Vanderplaats , G. N. ( 1979 ). Approximation Concepts for Numerical Airfoil Optimization , NASA TP 1370 , NASA Ames Research Center .
[32] Vanderplaats , G. N. ( 1984 ). Numerical Optimization Techniques for Engineering Design with Applications , McGraw Hill Series in Mechanical Engineering . McGraw Hill . New York . St. Louis. San Francisco . · Zbl 0613.90062
[33] Young , D. P. , Huffman , W. P. , Bieterman, M. 15. Melvin, R. G. Johnson. F. T. Hilmes. C. L.Duslo. A. R. ( 1994 ). Issues in design optimization methodology . Tech. Rep. BCSTECH-94-007 Rev.I . Boeing Computer Services , P.O.Box 24346. M/S 7L-68 . Seattle . WA 98124-0346 .
[34] Young , D. P. , Keycs , D. E. ( 1996 ). Newton’s method and design optimization , tech. Rep. ISSTECH-96-011 . Boeing Information and Support Services . P.O. Box 24346. M/S 7L-68 . Seattle . WA 98124-0346 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.