×

zbMATH — the first resource for mathematics

General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. (English) Zbl 0940.82035
Summary: Given a nonequilibrium steady state \(\rho\) the author derives formally the linear response formula for the variation of an expectation value at time t under a time-dependent infinitesimal perturbation \(\delta_{\tau} F\) of the acting forces. This leads to a form of the fluctuation-dissipation theorem valid far from equilibrium: the complex singularities of the susceptibility are in part those of the spectral density, and in part of a different nature to be discussed.

MSC:
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chernov, N.I.; Chernov, N.I., Phys. rev. lett., Commun. math. phys., 154, 569, (1993)
[2] Hoover, W.G., Molecular dynamics, () · Zbl 1179.82081
[3] Evans, D.J.; Morriss, G.P., ()
[4] Gallavotti, G.; Cohen, E.G.D.; Gallavotti, G.; Cohen, E.G.D., Phys. rev. lett., J. stat. phys., 80, 931, (1995)
[5] Evans, D.J.; Cohen, E.G.D.; Morriss, G.P., Phys. rev. lett., 71, 2401, (1993)
[6] Bonetto, F., Physica D, 105, 226, (1997)
[7] Gallavotti, G., Phys. rev. lett., 77, 4334, (1996)
[8] Gallavotti, G.; Ruelle, D., Commun. math. phys., 190, 279, (1997)
[9] Ruelle, D., Commun. math. phys., 187, 227, (1997)
[10] Sinai, Ya.G., Russian math. surveys, 27, 21, (1972)
[11] Ruelle, D., Am. J. math., 98, 619, (1976)
[12] Bowen, R.; Ruelle, D., Invent. math., 29, 181, (1975)
[13] Ledrappier, F.; Strelcyn, J.-M., Ergod. th. and dynam. syst., 2, 203, (1982)
[14] Ledrappier, F.; Young, L.S.; Ledrappier, F.; Young, L.S., Ann. of math., Ann. of math., 122, 540, (1985) · Zbl 1371.37012
[15] Young, L.-S., Ergodic theory of chaotic dynamical systems, () · Zbl 0793.58023
[16] G. Gallavotti mentions a seminar talk in Zurich in 1973
[17] Gallavotti, G., J. stat. phys., 84, 899, (1996)
[18] de Groot, S.R.; Mazur, P., ()
[19] D. Ruelle, Nonequilibrium statistical mechanics near equilibrium: computing higher order terms, to appear in Nonlinearity. · Zbl 0896.58071
[20] de Groot, S.R.; Mazur, P., ()
[21] Reed, M.; Simon, B., (), Section X.8
[22] (), Section 378B
[23] Martin, P.C., Phys. rev. A, 8, 423, (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.