×

Some inequalities for singular values and eigenvalues of generalized Schur complements of products of matrices. (English) Zbl 0941.15017

Using the transformation of Schur complements of matrices and some estimates of eigenvalues of positive semidefinite Hermitian matrices, the author proves some inequalities for singular values and eigenvalues of Schur complements of products of matrices.
Reviewer: M.Voicu (Iaşi)

MSC:

15A42 Inequalities involving eigenvalues and eigenvectors
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Smith, R.L., Some interlacing properties of the Schur complement of a Hermitian matrix, Linear algebra appl., 177, 137-144, (1992) · Zbl 0765.15007
[2] Liu, J.; Zhu, L., A minimum principle and estimates of the eigenvalues for Schur complements of positive semidefinite Hermitian matrices, Linear algebra appl., 265, 123-145, (1997) · Zbl 0885.15010
[3] Marshall, A.W.; Olkin, I., Inequalities: theory of majorization and its applications, (1979), Academic Press New York · Zbl 0437.26007
[4] Thompson, R.C., On the singular values of matrix product-II, Scripta math., 29, 111-114, (1973) · Zbl 0265.15007
[5] Horn, R.A.; Johnson, C.R., Topics in matrix analysis, (1991), Cambridge Press New York · Zbl 0729.15001
[6] Wang, B.; Zhang, F., Some inequalities for the eigenvalues of the product of positive semidefinite Hermitian matrices, Linear algebra appl, 160, 113-118, (1992) · Zbl 0744.15018
[7] Burns, F.; Carlson, D.; Haynsworth, E.; Markham, T., Generalized inverse formulas using the Schur complement, SIAM J. appl. math., 26, 254-259, (1974) · Zbl 0284.15004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.