Liu, Jianzhou Some inequalities for singular values and eigenvalues of generalized Schur complements of products of matrices. (English) Zbl 0941.15017 Linear Algebra Appl. 286, No. 1-3, 209-221 (1999). Using the transformation of Schur complements of matrices and some estimates of eigenvalues of positive semidefinite Hermitian matrices, the author proves some inequalities for singular values and eigenvalues of Schur complements of products of matrices. Reviewer: M.Voicu (Iaşi) Cited in 8 Documents MSC: 15A42 Inequalities involving eigenvalues and eigenvectors Keywords:Schur complements; eigenvalues; inequalities; singular values; products of matrices PDF BibTeX XML Cite \textit{J. Liu}, Linear Algebra Appl. 286, No. 1--3, 209--221 (1999; Zbl 0941.15017) Full Text: DOI OpenURL References: [1] Smith, R.L., Some interlacing properties of the Schur complement of a Hermitian matrix, Linear algebra appl., 177, 137-144, (1992) · Zbl 0765.15007 [2] Liu, J.; Zhu, L., A minimum principle and estimates of the eigenvalues for Schur complements of positive semidefinite Hermitian matrices, Linear algebra appl., 265, 123-145, (1997) · Zbl 0885.15010 [3] Marshall, A.W.; Olkin, I., Inequalities: theory of majorization and its applications, (1979), Academic Press New York · Zbl 0437.26007 [4] Thompson, R.C., On the singular values of matrix product-II, Scripta math., 29, 111-114, (1973) · Zbl 0265.15007 [5] Horn, R.A.; Johnson, C.R., Topics in matrix analysis, (1991), Cambridge Press New York · Zbl 0729.15001 [6] Wang, B.; Zhang, F., Some inequalities for the eigenvalues of the product of positive semidefinite Hermitian matrices, Linear algebra appl, 160, 113-118, (1992) · Zbl 0744.15018 [7] Burns, F.; Carlson, D.; Haynsworth, E.; Markham, T., Generalized inverse formulas using the Schur complement, SIAM J. appl. math., 26, 254-259, (1974) · Zbl 0284.15004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.