×

zbMATH — the first resource for mathematics

The role of critical exponents in blow-up theorems: The sequel. (English) Zbl 0942.35025
Consider the Cauchy problem in \(\mathbb R^N\) for the equation \(u_t=\Delta u+u^p\), where \(p>1\) and \(u\geq 0\). In 1966, H. Fujita [J. Fac. Sci., Univ. Tokyo, Sect. I 13, 109-124 (1966; Zbl 0163.34002)] showed that this problem does not have global nontrivial solutions if \(p<p_c:=1+2/N\) whereas both global and non-global positive solutions exist if \(p>p_c\). The exponent \(p_c\) is called Fujita’s critical exponent. The authors discuss various Fujita-type results which have appeared in the literature since 1990. These results include degenerate equations, problems in unbounded domains and on manifolds, problems with inhomogeneous boundary conditions, cooperative systems of equations. Moreover, the paper contains a section with open problems.

MSC:
35B33 Critical exponents in context of PDEs
35K55 Nonlinear parabolic equations
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aguirre, J.; Escobedo, M., On the blow-up of solutions of a convective reaction diffusion equation, Proc. roy. soc. Edinburgh, sect., 123A, 433-460, (1993) · Zbl 0801.35038
[2] Amann, H.; Fila, M., A Fujita-type theorem for the Laplace equation with a dynamical boundary condition, Acta math. univ. comenianae, 66, 321-328, (1997) · Zbl 0922.35053
[3] Anderson, J.R.; Deng, K., Global existence for nonlinear diffusion equations, J. math. anal. appl., 196, 479-501, (1995) · Zbl 0852.35075
[4] Andreucci, D.; Teedev, A.F., A Fujita type result for a degenerate Neumann problem with non compact boundary, J. math. anal. appl., 231, 543-567, (1999) · Zbl 0920.35079
[5] Angenent, A., The Morse-Smale property for a semilinear parabolic equation, J. differential equations, 62, 427-442, (1988) · Zbl 0581.58026
[6] Aronson, D.; Weinberger, H.F., Multidimensional nonlinear diffusion arising in population genetics, Adv. math., 30, 33-76, (1978) · Zbl 0407.92014
[7] Bandle, C.; Brunner, H., Blow-up in diffusion equations, a survey, J. comp. appl. math., 97, 3-22, (1998) · Zbl 0932.65098
[8] Bandle, C.; Levine, H.A., On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. amer. math. soc., 316, 595-622, (1989) · Zbl 0693.35081
[9] Bandle, C.; Levine, H.A., Fujita type phenomena for reaction-diffusion equations with convection like terms, Differential integral equation, 7, 1169-1193, (1994) · Zbl 0811.35044
[10] Bebernes, J.; Eberly, D., Mathematical problems from combustion theory, Applied mathematical sciences, 83, (1989), Springer New York · Zbl 0692.35001
[11] Bernis, F.; Hulshof, J.; Vázquez, J.L., A very singular solution for the dual porous medium equation and the asymptotic behavior of general solutions, J. reine angew. math., 435, 1-31, (1993) · Zbl 0756.35038
[12] Chen, X.-Y.; Matano, H., Convergence, asymptotic periodicity and finite-point blow up in one dimensional semilinear heat equations, J. differential equation, 78, 160-190, (1989) · Zbl 0692.35013
[13] M. Chlebik, and, M. Fila, From critical exponents to blow-up rates for parabolic problems, Rend. Math. Appl. (in press). · Zbl 0980.35057
[14] Del Santo, D.; Georgiev, V.; Mitidieri, E., Global existence of the solutions and formation of singularities for a class of hyperbolic systems, (), 117-140 · Zbl 0893.35066
[15] Deng, K., Nonexistence of global solutions of a nonlinear hyperbolic system, Trans. amer. math. soc., 349, 1685-1696, (1997) · Zbl 0960.35063
[16] Deng, K., Blow-up of solutions of some nonlinear hyperbolic systems, Rocky mountain J. math., 29, 807-820, (1999) · Zbl 0945.35054
[17] Deng, K.; Fila, M.; Levine, H.A., On critical exponent for a system of heat equations coupled in the boundary conditions, Acta math. univ. comenianae, 63, 169-192, (1994) · Zbl 0824.35048
[18] Deng, K.; Kwong, M.K.; Levine, H.A., The influence of nonlocal nonlinearities on the long-time behavior of solutions of Burgers’ equation, Quart. appl. math., 50, 173-200, (1992) · Zbl 0770.35061
[19] Escobedo, M.; Herrero, M.A., Boundedness and blow up for a semilinear reaction-diffusion system, J. differential equations, 89, 176-202, (1991) · Zbl 0735.35013
[20] Escobedo, M.; Levine, H.A., Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations, Arch. rational mech. anal., 129, 47-100, (1995) · Zbl 0822.35068
[21] Escobedo, M.; Vázquez, J.L.; Zuazua, E., Asymptotic behavior and source type solutions for a diffusion-convection equation, Arch. rational mech. anal., 124, 43-66, (1993)
[22] Escobedo, M.; Vázquez, J.L.; Zuazua, E., A diffusion-convection equation in several space dimensions, Ind. univ. math. J., 42, 1413-1440, (1993) · Zbl 0791.35059
[23] Escobedo, M.; Zuazua, E., Large time behavior for convection-diffusion equations in R^N, J. funct. anal., 100, 119-161, (1991) · Zbl 0762.35011
[24] Fila, M.; Levine, H.A., On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition, J. math. anal. appl., 204, 494-521, (1996) · Zbl 0870.35049
[25] Fila, M.; Levine, H.A.; Uda, Y., A Fujita-type global existence-global non-existence theorem for a system of reaction-diffusion equations with differing diffusivities, Math. methods appl. sci., 17, 807-835, (1994) · Zbl 0814.35046
[26] Fila, M.; Quittner, P., The blow-up rate for the heat equation with a non-linear boundary condition, Math. methods appl. sci., 14, 197-205, (1991) · Zbl 0735.35014
[27] Fujita, H., On the blowing up of solutions of the Cauchy problem for u_t=δu+u1+α, J. fac. sci. univ. Tokyo sec. 1A math., 16, 105-113, (1966)
[28] Galaktionov, V.A., On conditions for there to be no global solutions of a class of quasilinear parabolic equations, USSR comp. math. & math. phys., 22, 73-90, (1982) · Zbl 0548.35068
[29] Galaktionov, V.A., Blow-up for quasi-linear heat equations with critical Fujita’s exponents, Proc. roy. soc. Edinburgh, 124A, 517-525, (1994) · Zbl 0808.35053
[30] Galaktionov, V.A.; Kurdyumov, S.P.; Mikhailov, A.P.; Samarskiii, A.A., Unbounded solutions of the Cauchy problem for the parabolic equation u_t=∇(uσ∇u)+uβ, Dokl. akad. nauk SSSR, 252, 1362-1364, (1980)
[31] Galaktionov, V.A.; Levine, H.A., On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. math., 94, 125-146, (1996) · Zbl 0851.35067
[32] Galaktionov, V.A.; Levine, H.A., A general approach to critical Fujita exponents and systems, Nonlinear anal. TMA, 34, 1005-1027, (1998) · Zbl 1139.35317
[33] Galaktionov, V.A.; Vázquez, J.L., Necessary and sufficient conditions of complete blow up and extinction for one-dimensional quasilinear heat equations, Arch. rational mech. anal., 129, 225-244, (1995) · Zbl 0827.35055
[34] Galaktionov, V.A.; Vázquez, J.L., Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. pure appl. math., 50, 1-67, (1997) · Zbl 0874.35057
[35] Georgiev, V.; Lindblad, H.; Sogge, C., Weighted Strichartz estimate and global existence for semilinear wave equation, Amer. J. math., 119, 1291-1319, (1997) · Zbl 0893.35075
[36] Hamada, T., Nonexistence of global solutions of parabolic equation in conical domains, Tsukuba J. math., 19, 15-25, (1995) · Zbl 0842.35044
[37] T. Hamada, On the existence and nonexistence of global solutions of semilinear parabolic equations with slowly decaying initial data, preprint. · Zbl 0888.35055
[38] Hayakawa, K., On the nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan acad., 49, 503-525, (1973) · Zbl 0281.35039
[39] Henry, D., Geometric theory of semilinear parabolic equations, Lecture notes in mathematics, 840, (1981), Springer-Verlag New York
[40] Hu, B., Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition, Differential integral equations, 9, 891-901, (1996) · Zbl 0852.35072
[41] Hu, B.; Yin, H.-M., On critical exponents for the heat equation with a nonlinear boundary condition, Ann. inst. Henri. Poincaré, 13, 707-732, (1996) · Zbl 0908.35066
[42] Hu, B.; Yin, H.-M., On critical exponents for the heat equation with a mixed nonlinear Dirichlet-Neumann boundary condition, J. math. anal. appl., 209, 683-711, (1997) · Zbl 0874.35051
[43] Hu, B.; Yin, H.-M., Critical exponents for a system of heat equations coupled in a non-linear boundary condition, Math. methods appl. sci., 19, 1099-1120, (1996) · Zbl 0857.35064
[44] Huang, Q.; Mochizuki, K., A note on the global solutions of a degenerate parabolic system, Tokyo J. math., 20, 63-66, (1997) · Zbl 0884.35076
[45] Kavian, O., Remarks on the large time behavior of a nonlinear diffusion equation, Ann. inst. Henri. Poincaré, 4, 423-452, (1987) · Zbl 0653.35036
[46] Kobayashi, K.; Sirao, T.; Tanaka, H., On the blowing up problem for semilinear heat equations, J. math. soc. Japan, 29, 407-424, (1977) · Zbl 0353.35057
[47] H. Kubo, and, M. Ohta, Critical blowup for systems of semilinear wave equations in low space dimensions, preprint. · Zbl 0945.35016
[48] Y. Kurokawa, and, H. Takamura, Critical curve for p−q systems of nonlinear wave equations in three space dimensions, preprint. · Zbl 0977.35077
[49] Levine, H.A., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form pu_t=−au+F(u), Arch. rational mech. anal., 51, 371-386, (1973) · Zbl 0278.35052
[50] Levine, H.A., The role of critical exponents in blow-up theorems, SIAM reviews, 32, 262-288, (1990) · Zbl 0706.35008
[51] Levine, H.A., A. Fujita type global existence-global nonexistence theorem for a weakly coupled system of reaction-diffusion equations, Z. angew. math. phys., 42, 408-430, (1991) · Zbl 0786.35075
[52] Levine, H.A., A global existence-global nonexistence conjecture of Fujita type for a system of degenerate semilinear parabolic equations, Symp. on singularities and differential equations, Banach center for mathematics, (1996), Polish Acad. Sci Warszawa · Zbl 0855.35072
[53] Levine, H.A.; Meier, P., A blowup result for the critical exponent in cones, Israel J. math., 67, 1-7, (1989)
[54] Levine, H.A.; Meier, P., The value of the critical exponent for reaction-diffusion equations in cones, Arch. rational mech. anal., 109, 73-80, (1990) · Zbl 0702.35131
[55] H. A. Levine, and, Q. Zhang, The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values, Proc. Royal Soc. Edinburgh, in press. · Zbl 0960.35051
[56] Lu, G.; Sleeman, B.D., Maximum principles and comparison theorems for semi-linear parabolic systems and their applications, Proc. royal soc. Edinburgh, 123A, 857-885, (1993) · Zbl 0791.35006
[57] Lu, G.; Sleeman, B.D., Sub and super solutions to systems of parabolic equations with applications to generalized Fujita type systems, Math. methods appl. sci., 17, 1005-1016, (1994) · Zbl 0807.35061
[58] Matano, H., Nonincrease of the lap number of a solution for a one dimensional semilinear parabolic equation, J. fac. sci. univ. Tokyo, sect. 1A math., 29, 401-441, (1982) · Zbl 0496.35011
[59] Maz’ja, V.G., Sobolev spaces, Springer series in soviet mathematics, (1985), Springer-Verlag Berlin
[60] Meier, P., Blow-up of solutions of semilinear parabolic differential equations, Z. angew. math. phys., 39, 135-149, (1988) · Zbl 0661.35051
[61] Meier, P., On the critical exponent for reaction-diffusion equations, Arch. rational mech. anal., 109, 63-72, (1990) · Zbl 0702.35132
[62] Mizoguchi, N.; Yanagida, E., Critical exponents for the blowup of solutions with sign changes in a semilinear parabolic equation, Math. ann., 307, 663-675, (1997) · Zbl 0872.35046
[63] Mizoguchi, N.; Yanagida, E., Critical exponents for the blowup of solutions with sign changes in a semilinear parabolic equation II, J. differential equations, 145, 295-331, (1998) · Zbl 0924.35055
[64] Mochizuki, K.; Huang, Q., Existence and behavior of solutions for a weakly coupled system of reaction-diffusion equations, Meth. appl. math., 5, 109-124, (1998) · Zbl 0913.35065
[65] Mochizuki, K.; Mukai, K., Existence and nonexistence of global solutions to fast diffusions with source, Methods appl. anal., 2, 92-102, (1995) · Zbl 0832.35083
[66] Mochizuki, K.; Suzuki, R., Critical exponent and critical blow up for quasi-linear parabolic equations, Israel J. math., 98, 141-156, (1997) · Zbl 0880.35057
[67] ()
[68] ()
[69] ()
[70] Ohta, S.; Kaneko, A., Critical exponent of blowup for semilinear heat equation on a product domain, J. fac. sci. univ. Tokyo, sec. 1A math., 40, 635-650, (1994) · Zbl 0799.35126
[71] Pinsky, R.G., Existence and nonexistence of global solutions for u_t=δu+a(x)up in rd, J. differential equations, 133, 152-177, (1997) · Zbl 0876.35048
[72] Pinsky, R.G., Finite time blow-up for the inhomogeneous equation u_t=δu+a(x)up+λφ in rd, Proc. amer. math. soc., 127, 3313-3327, (1999) · Zbl 0930.35078
[73] Protter, M.; Weinberger, H.F., Maximum principles in differential equations, (1967), Prentice-Hall Englewood Cliffs · Zbl 0153.13602
[74] Qi, Y.-W., On the equation u_t=δuα+uβ, Proc. roy. soc. Edinburgh, 123A, 373-390, (1993) · Zbl 0801.35068
[75] Qi, Y.-W., The critical exponents of parabolic equations and blow-up in R^n, Proc. roy. soc. Edinburgh sect., 128A, 123-136, (1998) · Zbl 0892.35088
[76] Qi, Y.-W.; Levine, H.A., The critical exponent of degenerate parabolic systems, Z. angew. math. phys., 44, 249-265, (1993) · Zbl 0816.35068
[77] Souplet, P., Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. differential equations, 153, 374-406, (1999) · Zbl 0923.35077
[78] Souplet, P.; Weissler, W., Self-similar subsolutions and blowup for nonlinear parabolic problems, J. math. anal. appl., 212, 60-74, (1997) · Zbl 0892.35011
[79] Sturm, C., Mémoire sur une classe d’équations à différences partielles, J. math. pure appl., 1, 373-444, (1836)
[80] Suzuki, R., Critical blow up for quasilinear parabolic equations in exterior domains, Tokyo J. math., 19, 397-409, (1996) · Zbl 0868.35064
[81] Suzuki, R., Existence and nonexistence of global solutions to quasilinear parabolic equations with convection, Hokkaido math. J., 27, 147-196, (1998) · Zbl 0895.35056
[82] Uda, Y., The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equations, Z. angew math. phys., 46, 366-383, (1995) · Zbl 0835.35071
[83] Weissler, F., Existence and nonexistence of global solutions of a semi-linear heat equation, Israel J. math., 38, 29-40, (1981) · Zbl 0476.35043
[84] Zhang, Q., A new critical phenomenon for semilinear parabolic problems, J. math. anal. appl., 219, 125-139, (1998) · Zbl 0962.35087
[85] Zhang, Q., Blow up and global existence of solutions to an inhomogeneous parabolic system, J.d.e., 147, 155-183, (1998) · Zbl 0914.35024
[86] Q. Zhang, On five nonlinear boundary value problems on exterior domains, preprint.
[87] Zhang, Q., Blow up results for nonlinear parabolic equations on manifolds, Duke math. J., 97, 515-539, (1999) · Zbl 0954.35029
[88] Renclawowicz, J., Global existence and blow up for a completely coupled Fujita type system of reaction-diffusion equations, Appl. math., 25, 313-326, (1998) · Zbl 1002.35070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.