×

Ingredients for a general purpose stochastic finite elements implementation. (English) Zbl 0943.65008

A brief overview of general stochastic finite elements methods is presented with its specialization to linear operators with Gaussian material properties. Specific implementations are then developed for non-Gaussian and nonlinear properties.
Reviewer: W.Grecksch (Halle)

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I.A., ()
[2] Cameron, R.; Martin, W., The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals, Ann. math., 48, 385-392, (1947) · Zbl 0029.14302
[3] Cannon, J.R.; Ewing, R.E., Galerkin procedures for systems of parabolic partial differential equations related to the transmission of nerve impulses, (), 24-52 · Zbl 0361.35006
[4] Dobrushin, R.L.; Minlos, R.A., Polynomials in linear random functions, Russian math. surveys, 32, 2, 71-127, (1971) · Zbl 0378.60024
[5] Dunford, N.; Schwartz, J.T., Linear operators, (1958), Interscience London, San-Francisco, Melbourne, Part I
[6] Ghanem, R.; Spanos, P., Stochastic finite elements: A spectral approach, (1991), Springer-Verlag New York · Zbl 0722.73080
[7] Ghanem, R.; Kruger, R., Numerical solution of spectral stochastic finite element systems, Comp. methods appl. mech. engrg., 129, 289-303, (1996) · Zbl 0861.73071
[8] Ghanem, R.; Brzkala, V., Stochastic finite element analysis of randomly layered media, J. engrg. mech., 122, 4, 361-369, (1996)
[9] Ghanem, R.; Li, R., Adaptive polynomial chaos simulation applied to statistics of extremes in nonlinear random vibration, Prob. engrg. mech., 13, 2, 125-136, (1998)
[10] R. Ghanem, Hybrid stochastic finite elements: coupling of spectral expansions with Monte Carlo simulations, J. Appl. Mech., to appear.
[11] Ghanem, R., Probabilistic characterization of transport in heterogeneous porous media, Comp. methods appl. mech. engrg., 158, 199-220, (1998) · Zbl 0954.76079
[12] Ghanem, R.; Ghiocel, D., A new implementation of the spectral stochastic finite element method for stochastic constitutive relations, ()
[13] Janson, S., Gaussian Hilbert spaces, (1997), Cambridge University Press · Zbl 0887.60009
[14] Kallianpur, G., The role of reproducing kernel Hilbert spaces in the study of Gaussian processes, (), 49-83
[15] Kallianpur, G., Homogeneous chaos expansions, (), 230-254
[16] Kree, P., Equations lineaires a coefficients aleatoires, instituto nazionale di alta Mathematica, (), 515-546
[17] Kree, P., Functional analysis in stochatsic modelling, () · Zbl 0832.60004
[18] Loeve, M., Probability theory, (1977), Springer-Verlag Berlin · Zbl 0359.60001
[19] MacKay, M.D.; Beckman, R.J.; Conover, W.J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 2, 239-245, (1979) · Zbl 0415.62011
[20] Malliavin, P., Stochastic analysis, (1997), Springer-Verlag New York · Zbl 0878.60001
[21] Murray, F.J.; Neuman, J. von, On rings of operators, Ann. math., 37, 2, 116-229, (1936) · Zbl 0014.16101
[22] Obata, N., White noise calculus and Fock spaces, (1991), Springer-Verlag
[23] Pastur, L.; Figotin, A., Spectra of random and almost period operator, (1991), Springer-Verlag New York
[24] Pradlwarter, H.J.; Schueller, G.I., On advanced procedures in stochastic structural dynamics, J. nonlinear mech., (1996) · Zbl 0892.73080
[25] Segall, A.; Kailath, T., Orthogonal functionals of independent-increment processes, IEEE, trans. information theory IT, 22, 3, 287-298, (1976) · Zbl 0353.60080
[26] Skorohod, A.V., Random linear operators, (1984), D. Reidel Publishing Co. New York
[27] Thompson, S.K., Sampling, (1992), Wiley Interscience Dordrecht · Zbl 0850.62162
[28] Wick, G.C., The evaluation of the collision matrix, Phys. rev., 80, 268-272, (1950) · Zbl 0040.13006
[29] Wiener, N., The homogeneous chaos, Am. J. math., 60, 897-936, (1938) · JFM 64.0887.02
[30] ()
[31] Wintner, A.; Wiener, N., The discrete chaos, Am. J. math., 65, 279-298, (1943) · Zbl 0063.08250
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.