×

zbMATH — the first resource for mathematics

Fractional powers of self-adjoint operators and Trotter-Kato product formula. (English) Zbl 0945.47030
The authors study error estimates in the operator norm topology for the Trotter-Kato product formula under the assumption that fractional powers of the perturbation are dominated by the fractional powers of the unperturbed operator.

MSC:
47D03 Groups and semigroups of linear operators
47B25 Linear symmetric and selfadjoint operators (unbounded)
41A80 Remainders in approximation formulas
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Birman, M.Sh.; Solomyak, M.Z.:Spectral theory of self-adjoint operators in Hilbert space. Reidel, Dordrecht, 1987. · Zbl 0744.47017
[2] Doumeki, A.; Ichinose, T.; Tamura, H.: Error bounds on exponential product formulas for Schrödinger operators.J. Math. Soc. Japan. 50 (1998), 359-377. · Zbl 0910.47031 · doi:10.2969/jmsj/05020359
[3] Hiai, F.: Trace norm convergence of exponential product formula.Lett. Math. Phys. 33 (1995), 147-158. · Zbl 0835.47004 · doi:10.1007/BF00739803
[4] Ichinose, T.; Tamura, H.: Error estimate in operator norm for Trotter-Kato product formula.Integr. Equ. Oper. Theory 27 (1997), 195-207. · Zbl 0906.47028 · doi:10.1007/BF01191532
[5] Kato, T.: On the Trotter-Lie product formula.Proc. Japn. Acad. 50 (1974), 694-698. · Zbl 0336.47018 · doi:10.3792/pja/1195518790
[6] Kato, T.: Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups.Topics in Funct. Anal., Ad. Math. Suppl. Studies Vol.3, 185-195 (I. Gohberg and M. Kac eds.). Acad. Press, New York 1978. · Zbl 0461.47018
[7] Neidhardt, H.; Zagrebnov, V.A.: The Trotter-Kato poduct formula for Gibbs semigroups.Commun. Math. Phys. 131 (1990), 333-346. · Zbl 0717.47011 · doi:10.1007/BF02161418
[8] Neidhardt, H.; Zagrebnov, V.A.: On error estimates for the Trotter-Kato product formula.Lett. Math. Phys. 44 (1988), 169-186. · Zbl 0998.47021 · doi:10.1023/A:1007494816401
[9] Neidhardt, H.; Zagrebnov, V.A.: Trotter-Kato product formula and operator-norm convergence. To appear inCommun. Math. Phys. (1999). · Zbl 0949.47019
[10] Reed, M.; Simon, B.: Methods of Modern Mathematical Physics, Vol.I: Functional Analysis, Acad. Press, New York 1972. · Zbl 0242.46001
[11] Rogava, D.L.: Error bounds for Trotter-type formulas for self-adjoint operators.Funct. Anal. Application 27, No. 3 (1993), 217-219. · Zbl 0814.47050 · doi:10.1007/BF01087542
[12] Trotter, H.F.: On the products of semigroups of operators.proc. Am. Math. Soc. 10 (1959), 545-551. · Zbl 0099.10401 · doi:10.1090/S0002-9939-1959-0108732-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.