×

Stiff differential equations solved by Radau methods. (English) Zbl 0945.65080

Authors’ summary: Radau IIA methods are successful algorithms for the numerical solution of stiff differential equations. This article describes Radau, a new implementation of these methods with a variable order strategy. The paper starts with a survey on the historical development of the methods and the discoveries of their theoretical properties. Numerical experiments illustrate the behaviour of the code.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems

Software:

RADAU; RODAS
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Axelsson, O., A class of A-stable methods, Bit, 9, 185-199, (1969) · Zbl 0208.41504
[2] Bickart, T.A., An efficient solution process for implicit runge – kutta methods, SIAM J. numer. anal., 14, 1022-1027, (1977) · Zbl 0368.65037
[3] Birkhoff, G.; Varga, R.S., Discretization errors for well-set Cauchy problems, I, J. math. phys., 44, 1-23, (1965) · Zbl 0134.13406
[4] Burrage, K.; Butcher, J.C.; Chipman, F.H., An implementation of singly-implicit runge – kutta methods, Bit, 20, 326-340, (1980) · Zbl 0456.65040
[5] Butcher, J.C., Implicit runge – kutta processes, Math. comput., 18, 50-64, (1964) · Zbl 0123.11701
[6] Butcher, J.C., Integration processes based on radau quadrature formulas, Math. comput., 18, 233-244, (1964) · Zbl 0123.11702
[7] Butcher, J.C., A stability property of implicit runge – kutta methods, Bit, 15, 358-361, (1975) · Zbl 0333.65031
[8] Butcher, J.C., On the implementation of implicit runge – kutta methods, Bit, 6, 237-240, (1976) · Zbl 0336.65037
[9] Butcher, J.C.; Wanner, G., Runge – kutta methods: some historical notes, Appl. numer. math., 22, 113-151, (1996) · Zbl 0867.65038
[10] Crank, J.; Nicolson, P., A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Cambridge philos. soc., 43, 50-67, (1947) · Zbl 0029.05901
[11] M. Crouzeix, Sur l’approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, Thèse d’Etat, Univ. Paris 6, 1975.
[12] Curtiss, C.F.; Hirschfelder, J.O., Integration of stiff equations, Proc. natl. acad. sci., 38, 235-243, (1952) · Zbl 0046.13602
[13] Dahlquist, G., Fehlerabschätzungen bei differenzenmethoden zur numerischen integration gewöhnlicher differentialgleichungen, Zamm, 31, 239-240, (1951) · Zbl 0043.33601
[14] Dahlquist, G., A special stability problem for linear multistep methods, Bit, 3, 27-43, (1963) · Zbl 0123.11703
[15] G. Dahlquist, Error analysis for a class of methods for stiff nonlinear initial value problems, Numerical Analysis, Dundee, Lecture Notes in Math., Vol. 506, 1975, pp. 60-74.
[16] K. Dekker, J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam, 1984. · Zbl 0571.65057
[17] G. Denk, P. Rentrop, Mathematical models in electric circuit simulation and their numerical treatment, in: Numerical Treatment of Differential Equations, Halle/DDR, Teubner-Texte zur Mathematik, 1989. · Zbl 0733.65048
[18] Deuflhard, P., Order and stepsize control in extrapolation methods, Numer. math., 41, 399-422, (1983) · Zbl 0543.65049
[19] B.L. Ehle, On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems, Report CSRR 2010, Dept. AACS, Univ. of Waterloo, Ontario, Canada. See also: BIT 8 (1969) 276-278; SIAM J. Math. Anal. 4 (1969) 671-680.
[20] Enright, W.H.; Hull, T.E.; Lindberg, B., Comparing numerical methods for stiff systems of O.D.E:s, Bit, 15, 10-48, (1975) · Zbl 0301.65040
[21] Fox, L.; Goodwin, E.T., Some new methods for the numerical integration of ordinary differential equations, Proc. Cambridge philos. soc., 45, 373-388, (1949) · Zbl 0033.28701
[22] Frank, R.; Schneid, J.; Ueberhuber, C.W., The concept of B-convergence, SIAM J. numer. anal., 18, 753-780, (1981) · Zbl 0467.65032
[23] Frank, R.; Schneid, J.; Ueberhuber, C.W., Order results for implicit runge – kutta methods applied to stiff systems, SIAM J. numer. anal., 22, 515-534, (1985) · Zbl 0577.65056
[24] A. Guillou, J.L. Soulé, La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation, R.I.R.O, No R-3, 1969, pp. 17-44.
[25] Gustafsson, K., Control-theoretic techniques for stepsize selection in implicit runge – kutta methods, ACM trans. math. software, 20, 496-517, (1994) · Zbl 0888.65096
[26] Hairer, E.; Lubich, Ch.; Roche, M., Error of runge – kutta methods for stiff problems studied via differential algebraic equations, Bit, 28, 678-700, (1988) · Zbl 0657.65093
[27] E. Hairer, Ch. Lubich, M. Roche, The numerical solution of differential-algebraic systems by Runge-Kutta methods, Lecture Notes in Math., Vol. 1409, Springer, Berlin, 1989. · Zbl 0683.65050
[28] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd revised Edition, Springer Series in Comput. Math., Vol. 14, Springer, Berlin, 1996, 614pp. · Zbl 0859.65067
[29] Hammer, P.C.; Hollingsworth, J.W., Trapezoidal methods of approximating solutions of differential equations, Mtac, 9, 92-96, (1955) · Zbl 0066.10403
[30] Hulme, B.L., Discrete Galerkin and related one-step methods for ordinary differential equations, Math. comput., 26, 881-891, (1972) · Zbl 0272.65056
[31] Hut̆a, A., Une amélioration de la méthode de runge – kutta-Nyström pour la résolution numérique des équations différentielles du premier ordre, Acta math. univ. Comenian., 1, 201-224, (1956) · Zbl 0074.10803
[32] F. Iavernaro, F. Mazzia, Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques, Report n. 24/97, Università degli studi di Bari, Italy, 1997. · Zbl 0926.65076
[33] Liniger, W.; Willoughby, R.A., Efficient integration methods for stiff systems of ordinary differential equations, SIAM J. numer. anal., 7, 47-66, (1970) · Zbl 0187.11003
[34] Loud, W.S., On the long-run error in the numerical solution of certain differential equations, J. math. phys., 28, 1, 45-49, (1949) · Zbl 0033.37902
[35] Lubich, Ch.; Ostermann, A., Runge – kutta approximation of quasi-linear parabolic equations, Math. comput., 64, 601-627, (1995) · Zbl 0832.65104
[36] Petzold, L., Order results for implicit runge – kutta methods applied to differential/algebraic systems, SIAM J. numer. anal., 23, 837-852, (1986) · Zbl 0635.65084
[37] Prothero, A.; Robinson, A., On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. comput., 28, 145-162, (1974) · Zbl 0309.65034
[38] Radau, R., Étude sur LES formules d’approximation qui servent à calculer la valeur numérique d’une intégrale définie, J. math. pures appl. Sér. 3, 6, 283-336, (1880) · JFM 12.0229.01
[39] H.H. Robertson, The solution of a set of reaction rate equations, in: J. Walsh (Ed.), Numerical Analysis, an Introduction, Academic Press, New York, 1966, pp. 178-182.
[40] Rutishauser, H., Über die instabilität von methoden zur integration von gewöhnlichen differentialgleichungen, Z. angew. math. phys., 3, 65-74, (1952) · Zbl 0046.13303
[41] Wanner, G., A short proof on nonlinear A-stability, Bit, 16, 226-227, (1976) · Zbl 0329.65048
[42] Wanner, G.; Hairer, E.; Nørsett, S.P., Order stars and stability theorems, Bit, 18, 475-489, (1978) · Zbl 0444.65039
[43] Wright, K., Some relationships between implicit runge – kutta collocation and Lanczos τ methods, and their stability properties, Bit, 10, 217-227, (1970) · Zbl 0208.41602
[44] Watts, H.A., Step size control in ordinary differential equation solvers, Trans. soc. computer simulation, 1, 15-25, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.