×

zbMATH — the first resource for mathematics

Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. (English) Zbl 0947.81004
Summary: We report on a quantum optical experimental implementation of teleportation of unknown pure quantum states. This realizes all of the nonlocal aspects of the original scheme proposed by Bennett et al. and is equivalent to it up to a local operation. We exhibit results for the teleportation of a linearly polarized state and of an elliptically polarized state. We show that the experimental results cannot be explained in terms of a classical channel alone. The Bell measurement in our experiment can distinguish between all four Bell states simultaneously allowing, in the ideal case, a 100% success rate of teleportation.

MSC:
81P05 General and philosophical questions in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Bennett, Phys. Rev. Lett. 70 pp 1895– (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[2] M. \.Zukowski, Phys. Lett. A 157 pp 198– (1991) · doi:10.1016/0375-9601(91)90051-9
[3] H. Weinfurter, Europhys. Lett. 25 pp 559– (1994) · doi:10.1209/0295-5075/25/8/001
[4] S. L. Braunstein, Phys. Rev. A 51 pp R1727– (1995) · doi:10.1103/PhysRevA.51.R1727
[5] K. Mattle, Phys. Rev. Lett. 76 pp 4656– (1996) · doi:10.1103/PhysRevLett.76.4656
[6] A. Peres, in: Quantum Theory, Concepts, and Methods (1993) · Zbl 0820.00011
[7] S. Massar, Phys. Rev. Lett. 74 pp 1259– (1995) · Zbl 1020.81517 · doi:10.1103/PhysRevLett.74.1259
[8] D. Klyshko, in: Photons and Nonlinear Optics (1988)
[9] P. G. Kwiat, Phys. Rev. Lett. 75 pp 4337– (1995) · doi:10.1103/PhysRevLett.75.4337
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.