×

zbMATH — the first resource for mathematics

Effects of spin on the cyclotron frequency for a Dirac electron. (English) Zbl 0948.81659
Summary: The Barut-Zanghi theory - that constitutes a natural ‘classical limit’ of the Dirac theory and can be regarded to be a satisfactory picture of a classical spinning electron - has been analytically studied in some previous papers of ours in the case of free particles. By contrast, in this letter we consider the case of external fields, and a previously found equation of motion is generalized for a non-free spin-1/2 particle. In the important case of a spinning charge in a uniform magnetic field, we find that its angular frequency (around the magnetic field direction) is slightly different from the classical ‘cyclotron frequency’ \(\omega\equiv eH/m\) expected for spinless charges. As a matter of fact, the angular frequency does depend on the spin orientation. As a consequence, the electrons with magnetic moment \(\mu\) parallel to the magnetic field do rotate with a frequency greater than that of electrons endowed with a \(\mu\) antiparallel to \(H\).

MSC:
81V10 Electromagnetic interaction; quantum electrodynamics
78A99 General
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Corben, H.C., Phys. rev., 121, 1833, (1961)
[2] H.C. Corben, Classical and quantum theories of spinning particles, Holden-Day, San Francisco, 1968.
[3] Corben, H.C., Phys. rev. D, 30, 2683, (1984)
[4] Corben, H.C., Am.J. phys., 45, 658, (1977)
[5] Corben, H.C., Am.J. phys., 61, 551, (1993)
[6] Corben, H.C., Int. J. theor. phys., 34, 19, (1995)
[7] Kálnay, A.J., Phys. rev., 158, 1484, (1967)
[8] Kálnay, A.J., Phys. rev. D, 1, 1092, (1970)
[9] Kálnay, A.J., Phys. rev. D, 3, 2357, (1971)
[10] Kálnay, A.J., Phys. rev. D, 3, 2977, (1971)
[11] Jehle, H., Phys. rev. D, 3, 306, (1971)
[12] Riewe, F., Lett. nuovo cim., 1, 807, (1971)
[13] Berezin, F.A.; Marinov, M.S., J.E.T.P. lett., 21, 320, (1975)
[14] Casalbuoni, R., Nuovo cimento A, 33, 389, (1976)
[15] Perkins, G.A., Found. phys., 6, 237, (1976)
[16] Gutkowski, D.; Moles, M.; Vigier, J.P., Nuovo cim. B, 39, 193, (1977)
[17] Barut, A.O., Z. naturforsch. A, 33, 993, (1978)
[18] Lock, J.A., Am.J. phys., 47, 797, (1979)
[19] M. Pauri: in Lecture Notes in Physics, vol. 135, Springer, Berlin, 1980, p. 615.
[20] Cavalleri, G., Nuovo cim. B, 55, 392, (1980)
[21] Cavalleri, G., Phys. rev. D, 23, 363, (1981)
[22] Cavalleri, G., Phys. rev. C, 6, 239, (1983)
[23] Cavalleri, G., Lett. nuovo cim., 43, 285, (1985)
[24] Ikemori, F.A., Phys. lett. B, 199, 239, (1987)
[25] Ph. Gueret, Lectures at the Bari university, Bari, 1989.
[26] M.H. McGregor, The enigmatic electron, Kluwer, Dordrecht, 1992.
[27] Rodrigues, W.A.; Vaz, J.; Recami, E., Found. phys., 23, 459, (1993)
[28] G. Cavalleri, G. Salesi, in: Proc. of Physical Relativity Theory, British Soc. Phil. Sc., London, 9-12 September, 1994.
[29] Barut, A.O.; Zanghi, N., Phys. rev. lett., 52, 2009, (1984)
[30] Barut, A.O., A.J. bracken: phys. rev. D, 23, 2454, (1981)
[31] Barut, A.O., Phys. rev. D, 24, 3333, (1981)
[32] Barut, A.O.; Duru, I.H., Phys. rev. lett., 53, 2355, (1984)
[33] Barut, A.O.; Pavšič, M., Class. quantum grav., 4, L131, (1987)
[34] Barut, A.O.; Pavšič, M., Phys. lett. B, 216, 297, (1989)
[35] A.O. Barut, M. Pavšič, The spinning minimal surfaces without the Grassmann variables, preprint IC/88/2, ICTP; Trieste, 1988.
[36] Pavšič, M., Phys. lett. B, 221, 264, (1989)
[37] Pavšič, M., Phys. lett. B, 205, 231, (1988)
[38] Pavšič, M., Class. quant. grav., 7, L187, (1990)
[39] Recami, E.; Salesi, G., Phys. rev. A, 57, 98, (1998), and refs. therein
[40] Recami, E.; Salesi, G., Found. phys., 28, 763, (1998)
[41] Recami, E.; Salesi, G., Adv. appl. cliff. alg, 6, 27, (1996)
[42] E. Recami, G. Salesi, in: P. Pronin, G. Sardanashvily (Eds.), Gravity, Particles and Space-Time, World Scientific, Singapore, 1996, pp. 345-368.
[43] Vaz, J.; Rodrigues, W.A., Phys. lett. B, 319, 203, (1993)
[44] Rodrigues, W.A.; Vaz, J.; Recami, E.; Salesi, G., Phys. lett. B, 318, 623, (1993)
[45] Pavšič, M.; Recami, E.; Rodrigues, W.A.; Maccarrone, G.D.; Raciti, F.; Salesi, G., Hadronic J, 18, 97, (1995)
[46] Pavšič, M.; Recami, E.; Rodrigues, W.A.; Maccarrone, G.D.; Raciti, F.; Salesi, G., Phys. lett. B, 318, 481, (1993)
[47] Salesi, G.; Recami, E., Phys. lett. A, 190, 137, (1994)
[48] Salesi, G.; Recami, E., Phys. lett. A, 195, E389, (1994)
[49] Schrödinger, E., Sitzunger. preuss. akad. wiss. phys.-math. kl., 24, 418, (1930)
[50] Schrödinger, E., Sitzunger. preuss. akad. wiss. phys.-math. kl., 25, 1, (1931)
[51] Compton, A.H., Phys. rev., 14, 20, (1919), 247, and refs. therein
[52] Uhlenbeck, G.E.; Goudsmit, S.A., Nature, 117, 264, (1926)
[53] Frenkel, J., Z. phys., 37, 243, (1926)
[54] Takabayasi, T.; Vigier, J.-P., Progr. theor. phys., 18, 573, (1957)
[55] P.A.M. Dirac, The Principles of Quantum Mechanics, Claredon; Oxford, 1958, 4th ed., p. 262.
[56] Maddox, J., Nature, 325, 306, (1987)
[57] Salesi, G., Mod. phys. lett. A, 11, 1815, (1996)
[58] Salesi, G.; Recami, E., Found. phys. lett., 10, 533, (1997)
[59] G. Salesi, E. Recami, in: J. Keller, Z. Oziewicz (Eds.), The Theory of the Electron, UNAM Press, Mexico City, 1997, pp. 269-278. · Zbl 1221.81103
[60] Hestenes, D., Am.J. phys., 39, 1028, (1971)
[61] Hestenes, D., Am.J. phys., 39, 1013, (1971)
[62] Hestenes, D., Am.J. phys., 47, 399, (1979)
[63] Hestenes, D., J. math. phys., 14, 893, (1973)
[64] Hestenes, D., J. math. phys., 16, 573, (1975)
[65] Hestenes, D., J. math. phys., 16, 556, (1975)
[66] Hestenes, D., J. math. phys., 8, 798, (1979)
[67] Hestenes, D., Found. phys., 15, 63, (1985)
[68] Hestenes, D., Found. phys., 20, 1213, (1990)
[69] Hestenes, D., Found. phys., 23, 365, (1993)
[70] D. Hestenes, Space-time algebra, Gordon & Breach, New York, 1966; New Foundations for Classical Mechanics, Kluwer; Dordrecht, 1986.
[71] D. Hestenes, G. Sobczyk: Clifford Algebra to Geometric Calculus, Reidel; Dordrecht, 1984.
[72] D. Hestenes, A. Weingartshofer (Eds.), The electron, Kluwer, Dordrecht, 1991.
[73] Rivas, M., J. math. phys., 35, 3380, (1994), and references therein
[74] M. Rivas, unpublished.
[75] W.M. Pezzaglia Jr., Polydimensional relativity, a classical generalization of the automorphism invariance principle, submitted for pub. · Zbl 0898.35106
[76] L.D. Landau, E.M. Lifshitz: Fisica Teorica, vol. IV: Teoria quantistica relativistica, Ed.i Riuniti-Edizioni MIR; Roma, 1978, p. 148.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.