×

zbMATH — the first resource for mathematics

Global robust output regulation for a class of nonlinear systems. (English) Zbl 0948.93027
Summary: The problem of global robust output regulation is solved for a class of nonlinear systems driven by a linear neutrally stable exosystem. The proposed scheme makes use of a dynamic controller which processes information from the regulated error only. Robust regulation is achieved for every initial condition in the state space, and for all possible values of the uncertain parameter vector and the exogenous signal ranging over arbitrary compact sets. The regulator synthesis is based upon a recursive procedure, and takes advantage of both the special normal form of the plant equations and the passivity property of the internal model.

MSC:
93C10 Nonlinear systems in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C.I. Byrnes, F. Delli Priscoli, A. Isidori, Output Regulation of Uncertain Nonlinear Systems, Birkhäuser, Boston, MA, 1997. · Zbl 0876.93003
[2] F. Delli Priscoli, Robust tracking for polynomial plants, Proceedings of the second European Control Conference, Groeningen, NL, June 1993, pp. 369-373.
[3] Desoer, C.; Lin, C.A., Tracking and disturbance rejection of MIMO nonlinear systems with PI controller, IEEE trans. automat. control, AC-30, 861-867, (1985) · Zbl 0573.93027
[4] Hepburn, J.S.A.; Wonham, W.M., Error feedback and internal model on differentiable manifolds, IEEE transactions on automatic control, AC-29, 397-403, (1984) · Zbl 0543.93028
[5] Huang, J.; Lin, C.F., On a robust nonlinear multivariable servomechanism problem, IEEE trans. automat. control, AC-39, 1510-1513, (1994) · Zbl 0800.93290
[6] Huang, J.; Rugh, W.J., On a nonlinear multivariable servomechanism problem, Automatica, 26, 963-972, (1990) · Zbl 0717.93019
[7] A. Isidori, Nonlinear Control Systems, 3rd Edition, Springer, New York, 1995. · Zbl 0878.93001
[8] A. Isidori, Nonlinear Control Systems, vol. II, Springer, New York, 1999. · Zbl 0931.93005
[9] Isidori, A., A remark on the problem of semiglobal nonlinear output regulation, IEEE trans. automat. control, AC-42, 1734-1738, (1997) · Zbl 0897.93055
[10] Isidori, A.; Byrnes, C.I., Output regulation of nonlinear systems, IEEE trans. automat. control, AC-25, 131-140, (1990) · Zbl 0704.93034
[11] Kanellakopoulos, I.; Kokotovic, P.V.; Morse, A.S., A toolkit for nonlinear feedback design, Systems control lett., 18, 2, 83-92, (1992) · Zbl 0743.93039
[12] Khalil, H.K., Robust servomechanism output feedback controllers for feedback linearizable systems, Automatica, 30, 1587-1599, (1994) · Zbl 0816.93032
[13] R. Marino, P. Tomei, Global adaptive observers for nonlinear systems via filtered transformations, IEEE Trans. Automat. Control AC-37(8) (1992). · Zbl 0764.93047
[14] R. Marino, P. Tomei, Global adaptive output-feedback control of nonlinear systems, Part I: linear parameterization, IEEE Trans. Automat. Control AC-38(1) (1993) 17-32. · Zbl 0783.93032
[15] Marino, R.; Tomei, P., Robust stabilization of feedback linerarizable time-varying uncertain nonlinear systems, Automatica, 29, 1, 181-189, (1993) · Zbl 0778.93094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.